Key words: elevation of colony, collision risk, alcid, offshore wind farm, seabird
References
AINLEY, D.G., PORZIG, E., ZAJANC, D. & SPEAR, L.B. 2015. Seabird flight behavior and height in response to altered wind strength and direction. Marine Ornithology 43: 25-36.
BIODIVERSITY CENTER OF JAPAN. 2017. Monitoring Sites 1000: Seabird Investigation Report. Fiscal year 2016. Fujiyoshida, Japan: Nature Conservation Bureau, Ministry of the Environment (in Japanese with English abstract).
BIODIVERSITY CENTER OF JAPAN. 2018. Monitoring Sites 1000: Seabird Investigation Report. Fiscal year 2017. Fujiyoshida, Japan: Nature Conservation Bureau, Ministry of the Environment (in Japanese with English abstract).
BRADBURY, G., TRINDER, M., FURNESS, B., BANKS, A.N., CALDOW, R.W.G. & HUME, D. 2014. Mapping seabird sensitivity to offshore wind farms. PLoS One 9: e0106366. doi:10.1371/journal.pone.0106366
CLEASBY, I.R., WAKEFIELD, E.D., BEARHOP, S., BODEY, T.W., VOTIER, S.C. & HAMER, K.C. 2015. Three-dimensional tracking of a wide-ranging marine predator: Flight heights and vulnerability to offshore wind farms. Journal of Applied Ecology 52: 1474-1482. doi:10.1111/1365-2664.12529
COOK, A.S.C.P., JOHNSTON, A., WRIGHT, L.J. & BURTON, N.H.K. 2012. A Review of Flight Heights and Avoidance Rates of Birds in Relation to Offshore Wind Farms. Research report No. 618 prepared for The Crown Estate. Strategic Ornithological Support Services, Project SOSS-02. Norfolk, UK: British Trust for Ornithology.
CORMAN, A.-M. & GARTHE, S. 2014. What flight heights tell us about foraging and potential conflicts with wind farms: A case study in Lesser Black-backed Gulls (Larus fuscus). Journal of Ornithology 155: 1037-1043. doi:10.1007/s10336-014-1094-0
DESHOLM, M., FOX, A.D., BEASLEY, P.D.L. & KAHLERT, J. 2006. Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: A review. Ibis 148: 76-89. doi:10.1111/j.1474-919X.2006.00509.x
ELLIOTT, K.H., CHIVERS, L.S., BESSEY, L. ET AL. 2014. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring. Movement Ecology 2: article 17. doi:10.1186/s40462-014-0017-2
GSI (GEOSPATIAL INFORMATION AUTHORITY OF JAPAN). 2021. GSI Maps. Tsukuba, Japan: GSI. [Accessed at https://maps.gsi.go.jp/#7/43.381098/145.678711/&base=std&ls=std&disp=1&vs=c1j0h0k0l0u0t0z0r0s0m0f1 on 27 January 2021.]
HASEBE, M. & SENZAKI, M. 2016. Records of seabirds breeding on Rebun Island, Hokkaido. Rishiri Studies 35: 25-29 (in Japanese with English abstract).
HEDENSTRÖM, A. & ALERSTAM, T. 1992. Climbing performance of migrating birds as a basis for estimating limits for fuel-carrying capacity and muscle work. Journal of Experimental Biology 164: 19-38. doi:10.1242/jeb.164.1.19
HEDENSTRÖM, A. & ALERSTAM, T. 1994. Optimal climbing flight in migrating birds: Predictions and observations of knots and turnstones. Animal Behaviour 48: 47-54. doi:10.1006/anbe.1994.1210
JAKUBAS, D., ILISZKO, L.M., STRØM, H., DARECKI, M., JERSTAD, K. & STEMPNIEWICZ, L. 2016. Foraging behavior of a high-Arctic zooplanktivorous alcid, the Little Auk, at the southern edge of its breeding range. Journal of Experimental Marine Biology and Ecology 475: 89-99. doi:10.1016/j.jembe.2015.11.010
JOHNSTON, A., COOK, A.S.C.P., WRIGHT, L.J., HUMPHREYS, E.M. & BURTON, N.H.K. 2014. Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. Journal of Applied Ecology 51: 31-41. doi:10.1111/1365-2664.12191
KATO, A., WATANUKI, Y. & NAITO, Y. 2003. Foraging behaviour of chick-rearing Rhinoceros Auklets Cerorhinca monocerata at Teuri Island, Japan, determined by acceleration-depth recording micro data loggers. Journal of Avian Biology 34: 282-287. doi:10.1034/j.1600-048X.2003.03134.x
KIKUCHI, D.M., WATANUKI, Y., SATO, N., HOSHINA, K., TAKAHASHI, A. & WATANABE, Y.Y. 2015. Strouhal number for flying and swimming in Rhinoceros Auklets Cerorhinca monocerata. Journal of Avian Biology 46: 406-411. doi:10.1111/jav.00642
KRIJGSVELD, K.L., FIJN, R.C., JAPINK, M. ET AL. 2011. Effect studies Offshore Wind Farm Egmond aan Zee: Final report on fluxes, flight altitudes and behaviour of flying birds. Bureau Waardenburg Report 10-219. Culemborg, The Netherlands: Bureau Waardenburg.
OKADO, J., ITO, M. & WATANUKI, Y. 2019. Status of seabirds on Daikoku Island, Hokkaido. Journal of the Yamashina Institute for Ornithology 51: 95-104 (in Japanese with English abstract). doi:10.3312/jyio.51.95
PÉRON, G., CALABRESE, J.M., DURIEZ, O. ET AL. 2020. The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Animal Biotelemetry 8: article 5. doi:10.1186/s40317-020-00194-z
PIERSMA, T., HEDENSTRÖM, A. & BRUGGEMANN, J.H. 1997. Climb and flight speeds of shorebirds embarking on an intercontinental flight; do they achieve the predicted optimal behaviour? Ibis 139: 299-304. doi:10.1111/j.1474-919x.1997.tb04628.x
R CORE TEAM. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
SANZENBACHER, P.M., COOPER, B.A., PLISSNER, J.H. & BOND, J. 2014. Intra-annual patterns in passage rates and flight altitudes of Marbled Murrelets Brachyramphus marmoratus at inland sites in Northern California. Marine Ornithology 42: 169-174.
TARROUX, A., WEIMERSKIRCH, H., WANG, S.-H. ET AL. 2016. Flexible flight response to challenging wind conditions in a commuting Antarctic seabird: Do you catch the drift? Animal Behaviour 113: 99-112. doi:10.1016/j.anbehav.2015.12.021
THAXTER, C.B., ROSS-SMITH, V.H. & COOK, A.S.C.P. 2015. How high do birds fly? A review of current datasets and an appraisal of current methodologies for collecting flight height data: Literature review. BTO Research Report no. 666 for Natural England and The Crown Estate. Thetford, UK: British Trust for Ornithology.
TUCKER, V.A. & SCHMIDT-KOENIG, K. 1971. Flight speeds of birds in relation to energetics and wind directions. The Auk 88: 97-107.
WILKINSON, B.P., JAHNCKE, J., WARZYBOK, P., BRADLEY, R.W. & SHAFFER, S.A. 2018. Variable utilization of shelf break-associated habitats by chick-brooding Rhinoceros Auklets in the California Current System. Marine Ecology Progress Series 590: 211-226. doi:10.3354/MEPS12500
WOOD, S.N. 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 99: 673-686.
YONEHARA, Y., GOTO, Y., YODA, K. ET AL. 2016. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction. Proceedings of the National Academy of Sciences 113: 9039-9044. doi:10.1073/pnas.1523853113
ZAVALAGA, C.B., HALLS, J.N., MORI, G.P., TAYLOR, S.A. & DELL'OMO, G. 2010. At-sea movement patterns and diving behavior of Peruvian Boobies Sula variegata in northern Peru. Marine Ecology Progress Series 404: 259-274. doi:10.3354/meps08490