References
ANDRES, B.A. & FALXA, G.A. 2020. Black Oystercatcher (Haematopus bachmani), version 1.0. In:. POOLE, A.F. & GILL, F.B. (Eds.). The Birds of North America. Ithaca, USA: Cornell Laboratory of Ornithology.
BEARHOP, S., WALDRON, S., VOTIER, S.C. & FURNESS, R.W. 2002. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiological and Biochemical Zoology 75: 451-458. doi:10.1086/342800
BECKER, B.H. & BESSINGER, S.R. 2006. Centennial decline in the trophic level of an endangered seabird after fisheries decline. Conservation Biology 20: 470-479. doi:10.1111/j.1523-1739.2006.00379.x
BENSON, J. & SURYAN, R.M. 1999. A leg-noose for capturing adult kittiwakes at the nest. Journal of Field Ornithology 70: 393-399.
BUGONI, L., MCGILL, R.A.R. & FURNESS, R.W. 2008. Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Communications in Mass Spectrometry 22: 2457-2462. doi:10.1002/rcm.3633
CAUSEY, D., WELKER, J.M., BURNHAM, K.K., PADULA, V.M., & BARGMANN, N.A. 2014. Fine-scale temporal and spatial patterns of a high arctic marine bird community. In: MUETER, F.J., DICKSON, D.M.S., HUNTINGTON, H.P. ET AL. (Eds.). Responses of Arctic Marine Ecosystems to Climate Change. Fairbanks, USA: Alaska Sea Grant, University Alaska Fairbanks.
CAUT, S., ANGULO, E. & COURCHAMP, F. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443-453. doi:10.1111/j.1365-2664.2009.01620.x
CHEREL, Y., HOBSON, K.A. & HASSANI, S. 2005. Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiological and Biochemical Zoology 78: 106-115. doi:10.1086/425202
DENIRO, M.J. & EPSTEIN, S. 1981. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495-506. doi:10.1016/0016-7037(81)90244-1
FALXA, G. 1992. Prey choice and habitat use by foraging Black Oystercatchers: interactions between prey quality, habitat availability, and age of bird. PhD Thesis. Davis, USA: University of California, Davis.
FARMER, R.G. & LEONARD, M.L. 2011. Long-term feeding ecology of Great Black-backed Gulls (Larus marinus) in the northwest Atlantic: 110 years of feather isotope data. Canadian Journal of Zoology 89: 123-133. doi:10.1139/Z10-102
FRANCE, R.L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307-312. doi:10.3354/meps124307
FRANK, P.W. 1982. Effects of winter feeding on limpets by Black Oystercatchers Haematopus bachmani. Ecology 63: 1352-1362. doi:10.2307/1938863
GRUBER, N., KEELING, C.D., BACASTOW, R.B. ET AL. 1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochemical Cycles 50 13: 307-335. doi:10.1029/1999GB900019
GUO, C., KONAR, B.H., GORMAN, K.B. ET AL. 2022. Environmental factors important to high-latitude nearshore estuarine fish community structure. Deep-Sea Research Part II: Topical Studies in Oceanography 201: 105109. doi:10.1016/j.dsr.2022.105109
HARAMIS, G.M., JORDE, D.G., MACKO, S.A. ET AL. 2001. Stable-isotope analysis of canvasback winter diet in upper Chesapeake Bay. The Auk 118: 1008-1117. doi:10.1642/0004-8038(2001)118[1008:SIAOCW]2.0.CO;2
HARLEY, C.D.G., HUGHES, A.R., HULTGREN, K.M. ET AL. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228-241. doi:10.1111/j.1461-0248.2005.00871.x
HARTWICK, E.B. 1976. Foraging strategy of the Black Oystercatcher Haematopus bachmani Audubon. Canadian Journal of Zoology 54: 142-155. doi:10.1139/z76-015
HAZLITT, S.L., YDENBERG, R.C. & LANK, D.B. 2002. Territory structure, parental provisioning, and chick growth in the American Black Oystercatcher Haematopus bachmani. Ardea 90: 219-227.
HIPFNER, J.M. & ELNER, R.W. 2013. Sea-surface temperature affects breeding density of an avian rocky intertidal predator, the Black Oystercatcher Haematopus bachmani. Journal of Experimental Marine Biology and Ecology 440: 29-34. doi:10.1016/j.jembe.2012.11.007
HOBSON, K. & CLARK, R.G. 1992. Assessing avian diets using stable isotopes I: turnover of δ13C in tissues. The Condor 94: 181-188. doi:10.2307/1368807
HOBSON, K.A., SINCLAIR, E.H., YORK, A.E. ET AL. 2004. Retrospective isotopic analysis of stellar sea lion tooth annuli and seabird feathers: a cross-taxa approach to investigating regime and dietary shifts in the Gulf of Alaska. Marine Mammal Science 20: 621-638. doi:10.1111/j.1748-7692.2004.tb01183.x
IBANEZ, C.M., RIERA, R., LEITE, T. ET AL. 2021. Stomach content analysis in cephalopods: past research, current challenges, and future directions. Reviews in Fish Biology and Fisheries 31: 505-522. doi:10.1007/s11160-021-09653-z
INGER, R. & BEARHOP, S. 2008. Applications of stable isotope analysis to avian ecology. Ibis 150: 447-461. doi:10.1111/j.1474-919X.2008.00839.x
JENNINGS, S. & VAN DER MOLEN, J. 2015. Trophic levels of marine consumers from nitrogen stable isotope analysis: estimation and uncertainty. ICES Journal of Marine Science 72: 2289-2300. doi:10.1093/icesjms/fsv120
JOHNSON, M., CLARKSON, P., GOLDSTEIN, M.I. ET AL. 2010. Seasonal movements, winter range use, and migratory connectivity of the Black Oystercatcher. The Condor 112: 731-743. doi:10.1525/cond.2010.090215
KOHLER, S.A., CONNAN, M., HILL, J.M. ET AL. 2011. Geographic variation in the trophic ecology of an avian rocky shore predator, the African Black Oystercatcher, along the southern African coastline. Marine Ecology Progress Series 435: 235-249. doi:10.2307/24875477
LAROCHE, N.L, KING, S.L., ROGERS, M.C. ET AL. 2021. Behavioral observations and stable isotopes reveal high individual variation and little seasonal variation in sea otter diets in Southeastern Alaska. Marine Ecology Progress Series 677: 219-232. doi:10.3354/meps13871
LI, C.H., ROTH, J.D., & DETWILER, J.T. 2018. Isotopic turnover rates and diet-tissue discrimination depend on feeding habits of freshwater snails. PLoS ONE 13: e0199713. doi:10.1371/journal.pone.0199713
LINDBERG, D.R., WARHEIT, K.I. & ESTES, J.A. 1987. Prey preference and seasonal predation by Oystercatchers on limpets at San Nicolas Island, California, USA. Marine Ecology-Progress Series 39: 105-113. doi:10.3354/meps039105
MANRIQUEZ, P.H., JARA, M.E., GONZALEZ, C.P. ET AL. 2022. Multiple-stressor effects of ocean acidification, warming and predation risk on the early ontogeny of a rocky-shore keystone gastropod. Environmental Pollution 302: 118918. doi:10.1016/j.envpol.2022.118918
MARTEL, S.I., FERNANDEZ, C., LAGOS, N.A. ET AL. 2022. Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua. Frontiers in Marine Science 9: 972135. doi:10.3389/fmars.2022.972135
MCFARLAND, B.A. & KONAR, B. 2010. Physical and biological habitat preferences of Black Oystercher breeding territories in Kenai Fjords National Park. Natural Resource Technical Report NPS/SWAN/NRTR—2010/410. Fort Collins, USA: National Park Service.
MCGOWAN, C.P. & SIMONS, T.R. 2005. A method for trapping breeding adult American Oystercatchers. Journal of Field Ornithology 76:46-49. doi:10.1648/0273-8570-76.1.46
MILLER, M.W.C., LOVVORN, J.R., GRAFF, N.R., STELLRECHT, N.C. 2022. Use of marine v. freshwater proteins for egg-laying and incubation by sea ducks breeding in Arctic tundra. Ecosphere 13: e4138. doi:10.1002/ecs2.4138
MINAGAWA, M. & WADA, E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ13N and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140. doi:10.1016/0016-7037(84)90204-7
MIZUTANI, H., FUKUDA, N. & KABAYA, Y. 1992. (13)C and (15)N enrichment factors of feathers of 11 species of adult birds. Ecology 73: 1391-1395. doi:10.2307/1940684
MORSE, J.A., POWELL, A.N. & TETREAU, M.D. 2006. Productivity of Black Oystercatchers: effects of recreational disturbance in a national park. The Condor 108: 623-633. doi:10.1650/0010-5422(2006)108[623:POBOEO]2.0.CO;2
OGDEN, L.J.E., HOBSON, K.A. & LANK, D.B. 2004. Blood isotopic (δ13C and δ13N) turnover and diet-tissue fractionation factors in captive Dunlin (Calidris alpina pacifica). The Auk 121: 170-177. doi:10.1642/0004-8038(2004)121[0170:BICANT]2.0.CO;2
ORING, L.W., ABLE, K.P., ANDERSON, D.W. ET AL. 1998. Guidelines for the use of wild birds in research. The Auk 115 (Supplement): 1A-44A.
OWEN, J. 2011. Collecting, processing, and storing avian blood: a review. Journal of Field Ornithology 82: 339-354. doi:10.1111/j.1557-9263.2011.00338.x
PARNELL, A.C., INGER, R., BEARHOP, S. & JACKSON, A.L. 2010. Source partitioning using stable isotopes; coping with too much variation.: PLoS ONE 5: e9672. doi:10.1371/journal.pone.0009672
PEARSON, S.F., LEVEY, D.J., GREENBERG, C.H., DEL RIO, C.M. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic values in an omnivorous songbird. Oecologia 135: 516-523. doi:10.1007/s00442-003-1221-8
POE, A.J., GOLDSTEIN, M.I., BROWN, B.A. & ANDRES, B.A. 2009. Black Oystercatchers and campsites in Western Prince William Sound, Alaska. Waterbirds 32: 423-429. doi:10.1675/063.032.0307
POST, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
ROBINSON, B.H., COLETTI, H.A., PHILLIPS, L.M. & POWELL, A.N. 2018. Are prey remains accurate indicators of chick diet? A comparison of diet quantification techniques for Black Oystercatchers. Wader Study 125: 20-32. doi:10.18194/ws.00105
ROBINSON, B.H., PHILLIPS, L.M. & POWELL, A.N. 2019. Energy intake rate influences survival of Black Oystercatchers Haematopus bachmani broods. Marine Ornithology 47: 277-283.
ROGERS, L.A., WILSON, M.T., DUFFY-ANDERSON, J.T. ET AL. 2021. Pollack and “the Blob”: Impacts of a marine heatwave on walleye pollack early life stages. Fisheries Oceanography 30: 142-158. doi:10.1111/fog.12508
ROGERS, M.C., PEACOCK, E.L., SIMAC, K., O'DELL, M.B. & WELKER, J.M. 2015. Diet of female polar bears in the southern Beaufort Sea: evidence for an emerging alternative foraging strategy in response to environmental change. Polar Biology 38: 1035-1047. doi:10.1007/s00300-015-1665-4
STANEK, A.E., WOLF, N., HILDERBRAND, G.V. ET AL. 2017. Variation in seasonal foraging strategies in Alaska gray wolves in a salmon subsidized ecosystem. Canadian Journal of Zoology 95: 555-563. doi:10.1139/cjz-2016-0203
TESSLER, D.F., JOHNSON, J.A., ANDRES, B.A., THOMAS, S. & LANCTOT, R.B. 2014. A global assessment of the conservation status of the Black Oystercatcher Haematopus bachmani. International Wader Studies 20: 83-96.
THERRIEN, J.-F., FITZGERALD, G., GAUTHIER, G. & BETY, J. 2011. Diet-tissue discrimination factors of carbon and nitrogen stable isotopes in blood of Snowy Owl (Bubo scandiacus). Canadian Journal of Zoology 89: 343-347. doi:10.1139/z11-008
WATANABE, Y.W., CHIBA, T. & TANAKA, T. 2011. Recent change in the oceanic uptake rate of anthropogenic carbon in the North Pacific subpolar region determined by using a carbon-13 time series. Journal of Geophysical Research 116: C02006. doi:10.1029/2010JC00619
YANG, Q., COKELET, E.D., STABENO, P.J. ET AL. 2019. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fisheries Oceanography 28: 434-453. doi:10.1111/fog.12422