Menu

Volume 52, No. 2

Search by author or title:

Black Oystercatcher Haematopus bachmani productivity in California and Oregon and the effects of nest site and environmental covariates.


Authors

ANNA WEINSTEIN1,2*, JOSEPH LIEBEZEIT3, DANIEL ORR1, RYAN D. CARLE4 & TIMOTHY D. MEEHAN1
1National Audubon Society, 225 Varick Street, New York, New York, 10014, USA *(anna@solanolandtrust.org)
2Solano Land Trust, 198 Dobbins Street #A, Vacaville, California, 95688, USA
3Bird Alliance of Oregon, 5151 NW Cornell Road, Portland, Oregon, 97210, USA
4Oikonos Ecosystem Knowledge, 180 Benito Avenue, Santa Cruz, California, 95062, USA

Citation

WEINSTEIN, A., LIEBEZEIT, J. ORR, D., CARLE, R.D. & MEEHAN, T.D. 2024. Black Oystercatcher Haematopus bachmani productivity in California and Oregon and the effects of nest site and environmental covariates. . Marine Ornithology 52: 253 - 260
http://doi.org/10.5038/2074-1235.52.2.1590

Received 18 December 2023, accepted 28 May 2024

Date Published: 2024/10/15
Date Online: 2024/10/04
Key words: Haematopus, productivity, disturbance, ocean climate, oystercatcher, prey

Abstract

Black Oystercatcher Haematopus bachmani is a species of conservation concern due to its small global population, reliance on somewhat restricted intertidal habitat, and vulnerability to climate change impacts. Concern for this species, along with a lack of demographic information from the southern portion of its range, gave rise to a community science project to monitor pair productivity, nest characteristics, and nest disturbance from 2012 through 2022 across three study regions in Oregon and California. A clear spatial gradient existed in productivity, with relatively low values in the southern region (0.37 fledged young per pair per year, 95% confidence interval [CI] = 0.32-0.43; Southern California) compared to central (0.46, 0.41-0.51; Northern California and southern Oregon) and northern (0.60, 0.47-0.77; northern Oregon) regions. While productivity varied systematically across space, there was no general trend over time. Pair productivity was slightly higher at mainland nests than island nests when nest position above high tide was low, but it was highest at island nests when nest position was high. Productivity was negatively related to observed human disturbance but not consistently related to non-human disturbance or food availability, represented by estimates of mussel bed cover and depth near nests. We discuss our results in light of known and anticipated impacts of ocean and climate change on intertidal habitats of the coastal northeast Pacific region. We provide management recommendations and suggest avenues of new research to help in the conservation of this vulnerable species.

References


ANDRES, B. 1998. Restoration Notebook: Black Oystercatcher Haematopus bachmani. Anchorage, USA: Exxon Valdez Oil Spill Trustee Council.

ANDRES, B. A. & FALXA, G.A. 2020. Black Oystercatcher (Haematopus bachmani), version 1.0. In: POOLE, A.F. & GILL, F.B. (Eds.) Birds of the World. Ithaca, USA: Cornell Lab of Ornithology. doi:10.2173/bow.blkoys.01

BLANCHETTE, C.A., MELISSA MINER, C., RAIMONDI, P.T., LOHSE, D., HEADY, K.E. & BROITMAN, B.R. 2008. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. Journal of Biogeography 35: 1593-1607.

BROOKS, M.E., KRISTENSEN, K. & VAN BENTHEM, K.J. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378-400. doi:10.32614/RJ-2017-066

BURNHAM, K.P. & ANDERSON, D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York, USA: Springer New York.

CARLE, R.D., HESTER, M.M., COLETTA, E. & BECK, J.N. 2020. Cassin's Auklet (Ptychoramphus aleuticus) population size, reproduction, and habitat management on a recently colonized island in California, USA. Waterbirds 42: 366-379.

CARNEY, B., TESSLER, D., COLETTI, H., WELKER, J.M. & CAUSEY, D. 2023. Stable isotope-determined diets of Black Oystercatchers Haematopus bachmani in the northern Gulf of Alaska. Marine Ornithology 51: 125-135.

ESRI (ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE). 2011. ArcGIS Desktop: Release 10. Redlands, USA: Environmental Systems Research Institute.

FENBERG, P.B., POSBIC, K. & HELLBERG, M.E. 2014. Historical and recent processes shaping the geographic range of a rocky intertidal gastropod: phylogeography, ecology, and habitat availability. Ecology and Evolution 4: 3244-3255.

Griggs, G., Arvai, J. & Cayan, D. 2017. Rising Seas in California: An Update on Sea-Level Rise Science. Sacramento, USA: California Ocean Protection Council Science Advisory Team Working Group.

HIPFNER, J.M. & ELNER, R.W. 2013. Sea-surface temperature affects breeding density of an avian rocky intertidal predator, the black oystercatcher Haematopus bachmani. Journal of Experimental Marine Biology and Ecology 440: 29-34.

HIPFNER, J.M., MORRISON, K.W. & KOUWENBERG, A.L. 2012. Biology of Black Oystercatchers breeding on Triangle Island, British Columbia, 2003-2011. Northwestern Naturalist 93: 145-153.

HOLLENBECK, J.P., OLSEN, M.J. & HAIG, S.M. 2014. Using terrestrial laser scanning to support ecological research in the rocky intertidal zone. Journal of Coastal Conservation 18: 701-714. doi:10.1007/s11852-014-0346-8

Isaacs, J. 2020. Black Oystercatcher (Haematopus bachmani) Reproductive Success Monitoring San Luis Obispo County, CA. 2020 Final Report. Sacramento, USA: California State Parks; San Simeon, USA: San Luis Obispo Coast District; and Morro Bay, USA: Morro Coast Audubon Society.

KRAINSKI, E., GÓMEZ-RUBIO, V., BAKKA, H., ET AL. 2019. Advanced spatial modeling with stochastic partial differential equations using R and INLA. Boca Raton, USA: Chapman & Hall/CRC Press.

LAAKE, J.L., LOWRY, M.S., DELONG, R.L., MELIN, S.R. & CARRETTA, J.V. 2018. Population growth and status of California sea lions. The Journal of Wildlife Management 82: 583-595.

LAU, M.J., BECKER, B.H. & PRESS, D.T. 2021. Common Raven impacts on the productivity of a small breeding population of Snowy Plovers. Human-Wildlife Interactions 15: 13. doi:10.26077/ygkm-9b80

LIEBEZEIT, J., O'CONNOR, A., LYONS, J.E., SHANNON, C., STEPHENSEN, S. & ELLIOTT-SMITH, E. 2020. Black oystercatcher (Haematopus bachmani) population size, use of marine reserve complexes, and spatial distribution in Oregon. Northwestern Naturalist 101: 14-26.

LINDBERG, D.R., ESTES, J.A. & WARHEIT, K.I. 1998. Human influences on trophic cascades along rocky shores. Ecological Applications 8: 880-890.

MAILLET, O.R., NOL, E. & ZHARIKOV, Y. 2023. Apparent adult annual survival and population trends of Black Oystercatcher (Haematopus bachmani) breeding in British Columbia, Canada. Wilson Journal of Ornithology 135: 276-283.

MARZLUFF, J.M. & NEATHERLIN, E. 2006. Corvid response to human settlements and campgrounds: causes, consequences, and challenges for conservation. Biological Conservation 130: 301-314. doi:10.1016/j.biocon.2005.12.026

MARTEL, S.I., FERNÁNDEZ, C., LAGOS, N.A., ET AL. 2022. Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua. Frontiers in Marine Science 9: 972135. doi:10.3389/fmars.2022.972135

MCHURON, E.A., BLOCK, B.A. & COSTA, D.P. 2018. Movements and dive behavior of juvenile California sea lions from Año Nuevo Island. Marine Mammal Science 34: 238-249. doi:10.1111/mms.12449

MEEHAN, T.D., HARVEY, A.L., MICHEL, N.L., LANGHAM, G.M. & WEINSTEIN, A. 2018. A population model exploring factors influencing black oystercatcher (Haematopus bachmani) population dynamics. Waterbirds 41: 115-221.

MENGE, B.A., GRAVEM, S.A., JOHNSON, A., ROBINSON, J.W. & POIRSON, B.N. 2022. Increasing instability of a rocky intertidal meta-ecosystem. Proceedings of the National Academy of Sciences 119: e2114257119.

MINER, C.M., BURNAFORD, J.L., AMMANN, K., ET AL. 2021. Latitudinal variation in long‐term stability of North American rocky intertidal communities. Journal of Animal Ecology 90: 2077-2093.

MORRIS, W.F. & DOAK, D.F. 2002. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sunderland, USA: Sinauer Associates, Inc.

MORSE, J.A., POWELL, A.N. & TETREAU, M.D. 2006. Productivity of Black Oystercatchers: effects of recreational disturbance in a national park. The Condor 108: 623-633.

MULTI-AGENCY ROCKY INTERTIDAL NETWORK (MARINe), PARTNERSHIP FOR INTERDISCIPLINARY STUDIES OF COASTAL OCEANS (PISCO), RAIMONDI, P., ET AL. 2022. MARINe/PISCO Intertidal MARINe Long-Term Monitoring Surveys: Photo Plots and Transects Summarized [Dataset]. PISCO MN. doi:10.6085/AA/marine_ltm.12.9

OREGON DEPARTMENT OF FISH AND WILDLIFE. 2016. Oregon Conservation Strategy. Salem, USA: Oregon Department of Fish and Wildlife. [Accessed at https://www.oregonconservationstrategy.org/ on 15 June 2023.]

PALACIOS, E., VEGA, X., & GALINDO, D. 2009. Proyecto de Recuperación de Aves Playeras en el Noroeste de México. Unpublished Report. Centro de Investigación Científica y de Educación Superior de Ensenada, Centro de Ciencias de Sinaloa Culiacán, y Pronatura Noroeste, A.C.

POE, A.J., GOLDSTEIN M.I., BROWN, B.A. & ANDRES, B.A. 2009. Black oystercatchers and campsites in Prince William Sound, Alaska. Waterbirds 32: 423-429.

R CORE TEAM. 2022. R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.

ROBINSON, B.H., PHILLIPS, L.M. & POWELL, A.N. 2019. Energy intake rate influences survival of Black Oystercatcher Haematopus bachmani broods. Marine Ornithology 47: 277-283.

ROGERS-BENNETT, L. & CATTON, C.A. 2019. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports 9: 15050. doi:10.1038/s41598-019-51114-y

RUE, H., MARTINE, S. & CHOPIN, N. 2009. Approximate inference for latent Gaussian models by using integrated nested Laplace Approximations. Journal of the Royal Statistical Society, Series B 71: 319-392. doi:10.1111/j.1467-9868.2008.00700.x

SANFORD, E., SONES, J.L. & GARCÍA-REYES, M. 2019. Widespread shifts in the coastal biota of northern California during the 2014-16 marine heatwaves. Scientific Reports 9: 4216. doi:10.1038/s41598-019-40784-3

SENNER, S.E., ANDRES, B.A. & GATES, H.R. 2016. Pacific Americas Shorebird Conservation Strategy. New York, USA: National Audubon Society. Updated and corrected, November 2017. [Accessed online at http://www.shorebirdplan.org on 10 December 2023.]

TESSLER, D.F., JOHNSON, J.A., ANDRES, B.A., THOMAS, S. & LANCTOT, R. 2007. Black Oystercatcher (Haematopus bachmani) Conservation Action Plan. Anchorage, USA: International Black Oystercatcher Working Group, Alaska Department of Fish and Game; Anchorage, USA: U.S. Fish and Wildlife Service; and Manomet, USA: Manomet Center for Conservation Sciences.

TESSLER, D.F., JOHNSON, J.A., ANDRES, B.A., THOMAS, S. & LANCTOT, R.B. 2014. A global assessment of the conservation status of the Black Oystercatcher Haematopus bachmani. International Wader Studies 20: 83-96.

WARHEIT, K., LINDBERG, D. & BOEKELHEIDE, R. 1984. Pinniped disturbance lowers reproductive success of black oystercatcher Haematopus bachmani (Aves). Marine Ecology Progress Series 17: 101-104. doi:10.3354/meps017101

WEINSTEIN, A., TROCKI, L., LEVALLEY, R., DOSTER, R.H., DISTLER, T. & KRIEGER, K. 2014. A first population assessment of Black Oystercatcher Haematopus bachmani in California. Marine Ornithology 42: 49-56.

WILSON, U.W., MCMILLAN, A. & DOBLER, F.C. 2000. Nesting, population trend and breeding success of Peregrine Falcons on the Washington outer coast, 1080-98. Journal of Raptor Research 34: 67-74.

WOOTTON, T. 1993. Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. American Naturalist 141: 71-89.

Search by author or title:

Browse previous volumes: