Menu

Volume 53, No. 1

Search by author or title:

The owl gull: exclusively nocturnal foraging by the Swallow-tailed Gull Creagrus furcatus in Galápagos.


Authors

SEBASTIAN M. CRUZ1,4*, LUKE R. HALPIN2, CAROLINA PROAÑO1,4, DAVID J. ANDERSON3, & MARTIN WIKELSKI4,5
1Independent Researcher, Galápagos Islands, Ecuador *(cruz.seb@gmail.com)
2Gulbali Research Institute, Charles Sturt University, Albury, New South Wales, Australia
3Wake Forest University, Department of Biology, Winston Salem, USA
4Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, Germany
5University of Konstanz, Department of Biology, Konstanz, Germany

Citation

Cruz, S. M., Halpin, L. R., Proaño, C., Anderson, D. J., & Wikelski, M. 2025. The owl gull: exclusively nocturnal foraging by the Swallow-tailed Gull Creagrus furcatus in Galápagos.. Marine Ornithology 53: 67 - 73
http://doi.org/10.5038/2074-1235.53.1.1626

Received 09 July 2024, accepted 09 September 2024

Date Published: 2025/04/15
Date Online: 2025/03/09
Key words: nocturnal foraging, GPS tracking, diel vertical migration, spatial fidelity, Galápagos Marine Reserve

Abstract

Colony-based observations indicate that Swallow-tailed Gulls Creagrus furcatus go to sea only at night. Here, we use GPS tracking technology to reveal the species' exclusively nocturnal foraging behavior at four colonies in the Galápagos Islands. All nocturnal trips proved to be foraging effort in pelagic waters 19-103 km from nests during breeding. While at sea, individuals spent approximately one-quarter of their time commuting, with half of the time dedicated to area-restricted search behavior. Three years of data from one colony indicate spatial fidelity to a general foraging area. Our research directly confirms that Swallow-tailed Gulls are the only obligate nocturnal foragers among Laridae and contributes to our understanding of nocturnal foraging strategies in tropical seabirds.

References


Ainley, D. G., Ribic, C. A., & Fraser, W. R. (1992). Does prey preference affect habitat choice in Antarctic seabirds? Marine Ecology Progress Series, 90(3), 207-221.

Ballance, L. T., & Pitman, R. L. (1999). Foraging ecology of tropical seabirds. In N. J. Adams & R. H. Slotow (Eds.). Proceedings of the 22nd International Ornithology Congress (pp. 2057-2071). BirdLife South Africa.

Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V., & Eiane, K. (2021). Two hundred years of zooplankton vertical migration research. Biological Reviews, 96(4), 1547-1589. https://doi.org/10.1111/brv.12715

Beal, M., Oppel, S., Handley, J., Pearmain, E. J., Morera-Pujol, V., & Carneiro, A. P. B. (2021). Track2kba: An R package for identifying important sites for biodiversity from tracking data. Methods in Ecology and Evolution, 12(12), 2372-2378. https://doi.org/10.1111/2041-210X.13713

Benoit-Bird, K. J., Battaile, B. C., Heppell, S. A., Hoover, B., Irons, D., Jones, N., Kuletz, K., J., nordstrom, C. A., Paredes, R., Suryan, R. M., Waluk, C. M., & Trites, A. W. (2013). Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoS One, 8(1), e53348. https://doi.org/10.1371/journal.pone.0053348

Brooke, M. D. L., & Prince, P. A. (1991). Nocturnality in seabirds. Proceedings of the International Ornithological Congress, 20, 1113-1121.

Calenge, C. (2006). The Package “Adehabitat” for the R Software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197(3-4), 516-519. https://doi.org/10.1016/J.ECOLMODEL.2006.03.017

Cambra, M., Lara-Lizardi, F., Peñaherrera-Palma, C., Hearn, A., Ketchum, J. T., Zarate, P., Chacón, C., Suárez-Moncada, J., Herrera, E., & Espinoza, M. (2021). A first assessment of the distribution and abundance of large pelagic species at Cocos Ridge seamounts (Eastern Tropical Pacific) using drifting pelagic baited remote cameras. PLoS One, 16(11), e0244343. https://doi.org/10.1371/journal.pone.0244343

Cruz, S. M., Hooten, M., Huyvaert, K. P., Proaño, C. B., Anderson, D. J., & Wikelski, M. (2013). At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the Swallow-Tailed Gull. PLoS One, 8(2), e56889. https://doi.org/10.1371/journal.pone.0056889

Ford, R. G., & Krumme, D. W. (1979). The analysis of space use patterns. Journal Theoretical Biology, 76(2), 125-155. https://doi.org/10.1016/0022-5193(79)90366-7

Garriga, J., Palmer, J. R. B., Oltra, A., Bartumeus, F. (2016). Expectation-maximization binary clustering for behavioural annotation. PLoS One, 11(3), 1-26. https://doi.org/10.1371/journal.pone.0151984

Geen, G. R., Robinson, R. A., & Baillie, S. R. (2019). Effects of tracking devices on individual birds, a review of the evidence. Journal of Avian Biology, 50(2), e01823. http://doi.org/10.1111/jav.01823

Gibbs, L. H., & Gibbs, J. P. (1987). Prey robbery by nonbreeding Magnificent Frigatebirds (Fregata magnificens). The Wilson Bulletin, 99(1), 101-104.

Gillies, N., Fayet, A. L., Padget, O., Syposz, M., Wynn, J., Bond, S., Evry, J., Kirk, H., Shoji, A., Dean, B., Freeman, R., & Guilford, T. (2020). Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird. Scientific Reports, 10, 15056. https://doi.org/10.1038/s41598-020-72199-w

Gliwicz, Z. M. (1986). A lunar cycle in zooplankton. Ecology, 67(4), 883-897. https://doi.org/10.2307/1939811

Grant, T., Estes, O., & Estes, G. (2014). Observations on the breeding and distribution of Lava Gull (Leucophaeus fuliginosus). Cotinga, 37, 1-16.

Hailmain, J. (1964). The Galapagos swallow-tailed gull is nocturnal. The Wilson Bulletin, 76(4), 347-354. https://www.jstor.org/stable/4159327

Hall, M. I., & Ross, C. F. (2007). Eye shape and activity pattern in birds. Journal of Zoology, 271(4), 437-444. https://doi.org/10.1111/j.1469-7998.2006.00227.x

Harpp, K. S., Fornari, D. J., Geist, D. J., & Kurz, M. D. (2003). Genovesa Submarine Ridge: A manifestation of plume-ridge interaction in the northern Galápagos Islands. Geochemistry, Geophysics, Geosystems, 4(8511), 9. http://doi.org/10.1029/2003GC000531

Harris, M. (1970). Breeding ecology of the Swallow-tailed Gull, Creagrus furcatus. The Auk, 87(2), 215-243. https://doi.org/10.2307/4083917

Harris, M. (1977). Comparative ecology of seabirds in the Galapagos Archipelago. In B. Stonehouse & C. Perrins (Eds.), Evolutionary Ecology (pp. 65-76). Methuen. https://doi.org/10.1007/978-1-349-05226-4_7

Hall, M. I., & Ross, C. F. (2007). Eye shape and activity pattern in birds. Journal of Zoology 271: 437-444. https://doi.org/10.1111/j.1469-7998.2006.00227.x

Horning, M., & Trillmich, F. (1999). Lunar cycles in diel prey migrations exert a stronger effect on the diving of juveniles than adult Galápagos fur seals. Proceedings of the Royal Society: Biological Sciences, 266(1424), 1127-1132. http://doi.org/10.1098/rspb.1999.0753

Howard, J. L., Tompkins, E. M., & Anderson, D. J. (2021). Effects of age, sex, and ENSO phase on foraging and flight performance in Nazca boobies. Ecology & Evolution, 11(9), 4084-4100. http://doi.org/10.1002/ece3.7308

Iwaniuk, A. N., Heesy, C. P., & Hall, M. I. (2010). Morphometrics of the eyes and orbits of the nocturnal Swallow-tailed Gull (Creagrus furcatus). Canadian Journal of Zoology, 88(9), 855-865. https://doi.org/10.1139/Z10-051

Jackson, M. H. (1993). Galapagos: A natural history. University of Calgary Press.

Kokubun, N., Yamamoto, T., Kikuchi, D. M., Kitaysky, A., & Takahashi, A. (2015). Nocturnal foraging by red-legged kittiwakes, a surface feeding seabird that relies on deep water prey during reproduction. PLoS One, 10(10), e0138850. https://doi.org/10.1371/journal.pone.0138850

Lamb, J. S., Satgé, Y. S., Fiorello, C., & Jodice, P. (2017). Behavioral and reproductive effects of bird-borne data logger attachment on Brown Pelicans (Pelecanus occidentalis) on three temporal scales. Journal of Ornithology, 158, 617-627. https://doi.org/10.1007/s10336-016-1418-3

Lascelles B. G., Taylor, P. R., Miller, M. G. R., Dias, M. P., Oppel, S., Torres, L., Hedd, A., le Corre, M., Phillips, R. A., Shaffer, S. A., Weimerskirch, H., & Smakk, C. (2016). Applying global criteria to tracking data to define important areas for marine conservation. Diversity and Distributions, 22(4), 422-431. https://doi.org/10.1111/ddi.12411

Martin, G. (1990). Birds by night. T. & A. D. Poyser.

McKee, J. L., Tompkins, E. M., Estela, F. A., & Anderson, D. J. (2023). Age effects on Nazca booby foraging performance are largely constant across variation in the marine environment: Results from a 5‐year study in Galápagos. Ecology and Evolution, 13(6), e10138. https://doi.org/10.1002/ece3.10138

Mendez, L., Borsa, P., Cruz, S., de Grissac, S., Hennicke, J., Lallemand, J., Prudor, A., & Weimerskirch. (2017). Geographical variation in the foraging behaviour of the pantropical red-footed booby. Marine Ecology Progress Series, 568, 217- 230. https://doi.org/10.3354/meps12052

Nelson, J. B. (1968). Breeding behaviour of the Swallow-Tailed Gull in the Galapagos. Behaviour, 30(2/3), 146-174. https://www.jstor.org/stable/4533209

R Core Team. (2023). R (version 4.3.1) [Computer software]. The R Foundation for Statistical Computing. https://www.R-project.org/

Snow, D. W., & Nelson, J. B. (1984). Evolution and adaptations of Galapagos seabirds. Biological Journal of the Linnean Society, 21(1-2), 137-155. https://doi.org/10.1111/j.1095-8312.1984.tb02057.x

Snow, B., & Snow, D. (1968). Behaviour of the Swallow-tailed Gull of the Galapagos. The Condor, 70(3), 252-264.

Soanes, L. M., Arnould, J. P. Y., Dodd, S. G., Sumner, M. D., & Green, J. A. (2013). How many seabirds do we need to track to define home-range area? Journal of Applied Ecology, 50(3), 671-679. https://doi.org/10.1111/1365-2664.12069

Spear, L. B., Ainley, D. G., & Walker, W. A. (2007). Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Studies in Avian Biology, 35, 1-99.

Watanabe, H., Moku, M., Kawaguchi, K., Ishimaru, K. L., & Ohno, A. (1999). Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fisheries Oceanography, 8(2), 115-127. https://doi.org/10.1046/j.1365-2419.1999.00103.x

Weimerskirch, H. (2007). Are seabirds foraging for unpredictable resources? Deep-Sea Research Part II, 54(3-4), 211-223. https://doi.org/10.1016/j.dsr2.2006.11.013

Wikelski, M., Tarlow, E., Eising, C., Groothuis, T., & Gwinner, E. (2006). Do night-active birds lack daily melatonin rhythms? A case study comparing a diurnal and a nocturnal-foraging gull species. Journal of Ornithology, 147(1), 107-111. http://doi.org/10.1007/s10336-005-0018-4

Wilkinson, B. P., Satgé, Y. G., Lamb, J. S., & Jodice, P. (2019). Tropical cyclones alter short-term activity patterns of a coastal seabird. Movement Ecology, 7, 30. https://doi.org/10.1186/s40462-019-0178-0

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F. Jones (Eds.). Proceedings of the Sixth International Congress of Genetics. Vol. 1, Transactions and General Addresses (pp. 356-366). Genetics Society of America.

Zavalaga, C. B., Emslie, S. D., Estela, F., Muller, M., Dell'Omo, G., & Anderson, D. J. (2012). Overnight foraging trips by chick‐rearing Nazca Boobies (Sula granti) and the risk of attack by predatory fish. Ibis, 154(1), 61-73. http://doi.org/10.1111/j.1474-919X.2011.01198.x

Zavalaga, C. B., Dell'Omo, G., Becciu, P., & Yoda, K. (2011). Patterns of GPS tracks suggest nocturnal foraging by incubating Peruvian pelicans (Pelecanus thagus). PLoS One, 6(5), e19966. https://doi.org/10.1371/journal.pone.0019966

Search by author or title:

Browse previous volumes: