Menu

Volume 50, No. 2

Search by author or title:

Identification of marine Important Conservation Areas for Mediterranean Storm Petrels Hydrobates pelagicus melitensis breeding in Sardinia, Italy


Authors

FEDERICO DE PASCALIS1,2*, DANILO PISU3, DAVID PALA4, ANDREA BENVENUTI5, FRANCESCA VISALLI6, EUGENIO CARLON7, LORENZO SERRA1, DIEGO RUBOLINI2 & JACOPO G. CECERE1

1BIO-AVM, Istiuto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy *(fededepa@primolivello.it)
2Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
3Regione Pireddu Nieddu snc, Stintino, Italy
4Azienda Speciale Parco di Porto Conte, Alghero, Italy
5Ornis Italica, Rome, Italy
6Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Turin, Italy
7School of Life Sciences, University of Glasgow, Glasgow, United Kingdom

Citation

DE PASCALIS, F., PISU, D., PALA, D., BENVENUTI, A., VISALLI, F., CARLON, E., SERRA, L., RUBOLINI, D. & CECERE, J.G. 2022. Identification of marine Important Conservation Areas for Mediterranean Storm Petrels Hydrobates pelagicus melitensis breeding in Sardinia, Italy. Marine Ornithology 50: 205 - 210

Received 24 February 2022, accepted 11 July 2022

Date Published: 2022/10/15
Date Online: 2022/09/22
Key words: seabird, conservation, European Storm Petrel, marine spatial planning, human impact

Abstract

Marine predators are an important component of marine trophic webs, and their decline has important consequences on whole ecosystem dynamics. Understanding their movements and habits is vital for conservation, yet extremely challenging. Tracking technologies, coupled with a robust, reproducible, and quantitative analytical framework, are being used to successfully identify Important Conservation Areas (ICAs) for seabirds, which are wide-ranging and declining marine predators. However, the identification of such areas is skewed towards large-bodied seabird species, and there are few marine ICAs for small-bodied birds like storm petrels. We GPS-tracked Mediterranean Storm Petrels Hydrobates pelagicus melitensis breeding in northwestern Sardinia over three consecutive breeding seasons (2019-2021), and we applied a recently proposed analytical framework for the assessment of ICAs using GPS data. We identified an area of 40 638 km2 in the central Mediterranean Sea that spans three different national marine jurisdictions and partially falls within the Pelagos Sanctuary for Mediterranean Marine Mammals. In these ICAs, a range of human activities take place (e.g., fishing activities, maritime traffic, tanker maritime routes), particularly in the neritic zones. Despite the relatively low human presence in the area, the human impact on the Mediterranean Sea is predicted to increase in future years, with important consequences for conservation. International cooperation to identify ICAs at the basin scale is needed, given the trans-national nature of storm petrel movements. Here, we describe the polygon of the identified ICAs for the Italian population of Mediterranean Storm Petrel we studied (available for download) to help inform marine spatial planning and target the conservation and protection of the species.

References


ALBORES-BARAJAS, Y.V, RICCATO, F., FIORIN, R., MASSA, B., TORRICELLI, P. & SOLDATINI, C. 2011. Diet and diving behaviour of European Storm Petrels Hydrobates pelagicus in the Mediterranean (ssp. melitensis). Bird Study 58: 208-212. doi:10.1080/00063657.2011.560244

AZKONA, A., ZUBEROGOITIA, I., MARTINEZ, J.A. ET AL. 2006. Short-term effects of the Prestige oil spill on a colony of European storm-petrels Hydrobates pelagicus. Acta Zoologica Sinica 52: 1042-1048.

BEAL, M., OPPEL, S., HANDLEY, J. ET AL. 2021. track2KBA: An R package for identifying important sites for biodiversity from tracking data. Methods in Ecology and Evolution. 12: 2372-2378. doi:10.1111/2041-210X.13713

BOLTON, M. 2020. GPS tracking reveals highly consistent use of restricted foraging areas by European Storm-petrels Hydrobates pelagicus breeding at the largest UK colony: Implications for conservation management. Bird Conservation International 31: 35-52. doi:10.1017/S0959270920000374

BUGONI, L., MANCINI, P.L., MONTEIRO, D.S., NASCIMENTO, L. & NEVES, T.S. 2008. Seabird bycatch in the Brazilian pelagic longline fishery and a review of capture rates in the southwestern Atlantic Ocean. Endangered Species Research 5: 137-147. doi:10.3354/esr00115

CAGNON, C., LAUGA, B., HÉMERY, G. & MOUCHÈS, C. 2004. Phylogeographic differentiation of storm petrels [Hydrobates pelagicus] based on cytochrome b mitochondrial DNA variation. Marine Biology 145: 1257-1264. doi:10.1007/s00227-004-1407-6

CALENGE, C. 2006. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197: 516-519. doi:10.1016/j.ecolmodel.2006.03.017

CERTAIN, G., JØRGENSEN, L.L., CHRISTEL, I., PLANQUE, B. & BRETAGNOLLE, V. 2015. Mapping the vulnerability of animal community to pressure in marine systems: Disentangling pressure types and integrating their impact from the individual to the community level. ICES Journal of Marine Science 72: 1470-1482. doi:10.1093/icesjms/fsv003

CEU (COUNCIL OF THE EUROPEAN UNION). 2009. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds, Annex I. Brussels, Belgium: European Parliament.

CLAUDET, J. & FRASCHETTI, S. 2010. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biological Conservation 143: 2195-2206. doi:10.1016/j.biocon.2010.06.004

D'ELBÉE, J. & HÉMERY, G. 1998. Diet and foraging behaviour of the British Storm Petrel Hydrobates pelagicus in the Bay of Biscay during summer. Ardea 86: 1-10.

DAVIES, T.E., CARNEIRO, A.P.B., TARZIA, M. ET AL. 2021. Multispecies tracking reveals a major seabird hotspot in the North Atlantic. Conservation Letters 14: e12824. doi:10.1111/conl.12824

DE PASCALIS, F., DE FELICE, B., PAROLINI, M. ET AL. 2022. The hidden cost of following currents: Microplastic ingestion in a planktivorous seabird. Marine Pollution Bulletin 182: 114030.

DE PASCALIS, F., PALA, D., PISU, D. ET AL. 2021. Searching on the edge: dynamic oceanographic features increase foraging opportunities in a small pelagic seabird. Marine Ecology Progress Series 668: 121-132. doi:10.3354/meps13726

DIAS, M.P., MARTIN, R., PEARMAIN, E.J. ET AL. 2019. Threats to seabirds: A global assessment. Biological Conservation 237: 525-537. doi:10.1016/j.biocon.2019.06.033

DIAS, M.P., OPPEL, S., BOND, A.L. ET AL. 2017. Using globally threatened pelagic birds to identify priority sites for marine conservation in the South Atlantic Ocean. Biological Conservation 211: 76-84. doi:10.1016/j.biocon.2017.05.009

DONALD, P.F., FISHPOOL, L.D.C., AJAGBE, A. ET AL. 2019. Important Bird and Biodiversity Areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conservation International 29: 177-198. doi:10.1017/S0959270918000102

EC (EUROPEAN COMMISSION). 2022. European Marine Observation and Data Network (EMODnet). Oostende, Belgium: EC. [Accessed at https://emodnet.ec.europa.eu/en/human-activities on 23 May 2022.]

ERA (ENVIRONMENT AND RESOURCES AUTHORITY). 2022. Natura 2000 Datasheets and Maps. Marsa, Malta: ERA. [Accessed at https://era.org.mt/topic/natura-2000-datasheets-maps/ on 23 May 2022.]

FERRETTI, F., WORM, B., BRITTEN, G.L., HEITHAUS, M.R. & LOTZE, H.K. 2010. Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters 13: 1055-1071. doi:10.1111/j.1461-0248.2010.01489.x

FRASER, K.C., DAVIES, K.T.A., DAVY, C.M., FORD, A.T., FLOCKHART, D.T.T. & MARTINS, E.G. 2018. Tracking the conservation promise of movement ecology. Frontiers in Ecology and Evolution 6: 150. doi:10.3389/FEVO.2018.00150

HALPERN, B.S., WALBRIDGE, S., SELKOE, K.A. ET AL. 2008. A global map of human impact on marine ecosystems. Science 319: 948-952.

HEITHAUS, M.R., FRID, A., WIRSING, A.J. & WORM, B. 2008. Predicting ecological consequences of marine top predator declines. Trends in Ecology and Evolution 23: 202-210. doi:10.1016/j.tree.2008.01.003

HIJMANS, R.J. 2018. raster: Geographic Data Analysis and Modeling. Version 3.5-15. Boston, USA: Free Software Foundation, Inc.

HUTCHINGS, J.A. & REYNOLDS, J.D. 2004. Marine fish population collapses: Consequences for recovery and extinction risk. BioScience 54: 297-309. doi:10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2

KELLER, V., HERRANDO, S., VORISEK, P. & FRANCH, M. 2020. European Breeding Bird Atlas 2: Distribution, Abundance and Change. Barcelona, Spain: Lynx Edicions.

LAGO, P., AUSTAD, M. & METZGER, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Marine Ornithology 47: 105-113.

LASCELLES, B.G., TAYLOR, P.R., MILLER, M.G.R. ET AL. 2016. Applying global criteria to tracking data to define important areas for marine conservation. Diversity and Distributions 22: 422-431. doi:10.1111/ddi.12411

LEBRETON, L.C.M., GREER, S.D. & BORRERO, J.C. 2012. Numerical modelling of floating debris in the world's oceans. Marine Pollution Bulletin 64: 653-661. doi:10.1016/j.marpolbul.2011.10.027

MARTÍNEZ, C., ROSCALES, J.L., SANZ-AGUILAR, A. & GONZÁLEZ-SOLÍS, J. 2019. Inferring the wintering distribution of the Mediterranean populations of European Storm-Petrels Hydrobates pelagicus melitensis from stable isotope analysis and observational field data. Ardeola 66: 13-32. doi:10.13157/arla.66.1.2019.ra2

MASSA, B. & SULTANA, J. 1991. Status and conservation of the Storm Petrel Hydrobates pelagicus in the Mediterranean. Il-Merill 27: 1-5.

MEDPAN (MEDITERRANEAN PROTECTED AREAS NETWORK). 2022. Marseille, France: MEDPAN. [Accessed at https://medpan.org/ on 23 May 2022.]

MICHELI, F., HALPERN, B.S., WALBRIDGE, S. ET AL. 2013. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: Assessing current pressures and opportunities. PLoS One. 8: e79889. doi:10.1371/journal.pone.0079889

MORINAY, J., DE PASCALIS, F., CATONI, C. ET AL. 2022. Assessing important conservation areas for colonial species from individual tracking data: an evaluation of the effects of colony structure and temporal heterogeneity in movement patterns. Frontiers in Marine Science 9: 854826. doi:10.3389/fmars.2022.854826

NOTARBARTOLO-DI-SCIARA, G., AGARDY, T., HYRENBACH, D., SCOVAZZI, T. & VAN KLAVEREN, P. 2008. The Pelagos Sanctuary for Mediterranean Marine Mammals. Aquatic Conservation 18: 367-391. doi:10.1002/aqc.855

OPPEL, S., BOLTON, M., CARNEIRO, A.P.B. ET AL. 2018. Spatial scales of marine conservation management for breeding seabirds. Marine Policy 98: 37-46. doi:10.1016/j.marpol.2018.08.024

PÉRON, C., GRÉMILLET, D., PRUDOR, A. ET AL. 2013. Importance of coastal Marine Protected Areas for the conservation of pelagic seabirds: The case of Vulnerable Yelkouan Shearwaters in the Mediterranean Sea. Biological Conservation 168: 210-221. doi:10.1016/j.biocon.2013.09.006

POTT, C. & WIEDENFELD, D.A. 2017. Information gaps limit our understanding of seabird bycatch in global fisheries. Biological Conservation 210: 192-204. doi:10.1016/j.biocon.2017.04.002

R CORE TEAM 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: The R Foundation for Statistical Computing.

RODRÍGUEZ, A., ARCOS, J.M., BRETAGNOLLE, V. ET AL. 2019. Future directions in conservation research on petrels and shearwaters. Frontiers in Marine Science 6: 94. doi:10.3389/fmars.2019.00094

ROTGER, A., SOLA, A., TAVECCHIA, G. & SANZ-AGUILAR, A. 2020. Foraging far from home: GPS-tracking of Mediterranean Storm-Petrels Hydrobates pelagicus melitensis reveals long-distance foraging movements. Ardeola 68: 3-16. doi:10.13157/arla.68.1.2021.ra1

SHIMADA, T., JONES R., LIMPUS, C. & HAMANN, M. 2012. Improving data retention and home range estimates by data-driven screening. Marine Ecology Progress Series 457: 171-180. doi:10.3354/meps09747

SOLDATINI, C., ALBORES-BARAJAS, Y.V., TAGLIAVIA, M., MASSA, B., FUSANI, L. & CANOINE, V. 2015. Effects of human disturbance on cave-nesting seabirds : the case of the storm petrel. Conservation Physiology 3: cov041. doi:10.1093/conphys/cov041

QGIS DEVELOPMENT TEAM. 2009. QGIS Geographic Information System. Open Source Geospatial Foundation Project.

ZABALA, J., ZUBEROGOITIA, I., MARTÍNEZ-CLIMENT, J.A. & ETXEZARRETA, J. 2011. Do long lived seabirds reduce the negative effects of acute pollution on adult survival by skipping breeding? A study with European Storm Petrels (Hydrobates pelagicus) during the “Prestige” oil-spill. Marine Pollution Bulletin 62: 109-115. doi:10.1016/j.marpolbul.2010.09.004

Search by author or title:

Browse previous volumes: