Menu

Volume 51, No. 1

Search by author or title:

Flight altitudes of chick-rearing Rhinoceros Auklets Cerorhinca monocerata measured by GPS logger


Authors

JUMPEI OKADO1,2, & YUTAKA WATANUKI1
1Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan
2Present address: Salmon Research Department, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-2 Nakanoshima, Toyohira-ku, Sapporo 062-0922, Japan (s02119172c@gmail.com)

Citation

OKADO, J. & WATANUKI, Y. 2023. Flight altitudes of chick-rearing Rhinoceros Auklets Cerorhinca monocerata measured by GPS logger. Marine Ornithology 51: 109 - 114
http://doi.org/10.5038/2074-1235.51.1.1517

Received 15 February 2021, accepted 07 February 2023

Date Published: 2023/04/15
Date Online: 2023/04/10
Key words: elevation of colony, collision risk, alcid, offshore wind farm, seabird

Abstract

Alcids generally fly at low altitudes (below 5 m) over the sea but may occasionally fly higher in certain areas, which may put them at risk of collision with turbine blades in offshore wind farms. We used GPS loggers to investigate the location and altitude of flying Rhinoceros Auklets Cerorhinca monocerata. They typically flew at low altitudes averaging < 1 m but flew higher (> 20 m) when returning the last 5-10 km to their colony, which was located at an elevation of 120-130 m above sea level. Thus, the region over which Rhinoceros Auklets fly highest may vary, depending on the location and elevation of their breeding sites. Therefore, it is important to consider spatio-temporal flight altitude patterns when assessing their collision risks with offshore wind turbines.

References


AINLEY, D.G., PORZIG, E., ZAJANC, D. & SPEAR, L.B. 2015. Seabird flight behavior and height in response to altered wind strength and direction. Marine Ornithology 43: 25-36.

BIODIVERSITY CENTER OF JAPAN. 2017. Monitoring Sites 1000: Seabird Investigation Report. Fiscal year 2016. Fujiyoshida, Japan: Nature Conservation Bureau, Ministry of the Environment (in Japanese with English abstract).

BIODIVERSITY CENTER OF JAPAN. 2018. Monitoring Sites 1000: Seabird Investigation Report. Fiscal year 2017. Fujiyoshida, Japan: Nature Conservation Bureau, Ministry of the Environment (in Japanese with English abstract).

BRADBURY, G., TRINDER, M., FURNESS, B., BANKS, A.N., CALDOW, R.W.G. & HUME, D. 2014. Mapping seabird sensitivity to offshore wind farms. PLoS One 9: e0106366. doi:10.1371/journal.pone.0106366

CLEASBY, I.R., WAKEFIELD, E.D., BEARHOP, S., BODEY, T.W., VOTIER, S.C. & HAMER, K.C. 2015. Three-dimensional tracking of a wide-ranging marine predator: Flight heights and vulnerability to offshore wind farms. Journal of Applied Ecology 52: 1474-1482. doi:10.1111/1365-2664.12529

COOK, A.S.C.P., JOHNSTON, A., WRIGHT, L.J. & BURTON, N.H.K. 2012. A Review of Flight Heights and Avoidance Rates of Birds in Relation to Offshore Wind Farms. Research report No. 618 prepared for The Crown Estate. Strategic Ornithological Support Services, Project SOSS-02. Norfolk, UK: British Trust for Ornithology.

CORMAN, A.-M. & GARTHE, S. 2014. What flight heights tell us about foraging and potential conflicts with wind farms: A case study in Lesser Black-backed Gulls (Larus fuscus). Journal of Ornithology 155: 1037-1043. doi:10.1007/s10336-014-1094-0

DESHOLM, M., FOX, A.D., BEASLEY, P.D.L. & KAHLERT, J. 2006. Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: A review. Ibis 148: 76-89. doi:10.1111/j.1474-919X.2006.00509.x

ELLIOTT, K.H., CHIVERS, L.S., BESSEY, L. ET AL. 2014. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring. Movement Ecology 2: article 17. doi:10.1186/s40462-014-0017-2

GSI (GEOSPATIAL INFORMATION AUTHORITY OF JAPAN). 2021. GSI Maps. Tsukuba, Japan: GSI. [Accessed at https://maps.gsi.go.jp/#7/43.381098/145.678711/&base=std&ls=std&disp=1&vs=c1j0h0k0l0u0t0z0r0s0m0f1 on 27 January 2021.]

HASEBE, M. & SENZAKI, M. 2016. Records of seabirds breeding on Rebun Island, Hokkaido. Rishiri Studies 35: 25-29 (in Japanese with English abstract).

HEDENSTRÖM, A. & ALERSTAM, T. 1992. Climbing performance of migrating birds as a basis for estimating limits for fuel-carrying capacity and muscle work. Journal of Experimental Biology 164: 19-38. doi:10.1242/jeb.164.1.19

HEDENSTRÖM, A. & ALERSTAM, T. 1994. Optimal climbing flight in migrating birds: Predictions and observations of knots and turnstones. Animal Behaviour 48: 47-54. doi:10.1006/anbe.1994.1210

JAKUBAS, D., ILISZKO, L.M., STRØM, H., DARECKI, M., JERSTAD, K. & STEMPNIEWICZ, L. 2016. Foraging behavior of a high-Arctic zooplanktivorous alcid, the Little Auk, at the southern edge of its breeding range. Journal of Experimental Marine Biology and Ecology 475: 89-99. doi:10.1016/j.jembe.2015.11.010

JOHNSTON, A., COOK, A.S.C.P., WRIGHT, L.J., HUMPHREYS, E.M. & BURTON, N.H.K. 2014. Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. Journal of Applied Ecology 51: 31-41. doi:10.1111/1365-2664.12191

KATO, A., WATANUKI, Y. & NAITO, Y. 2003. Foraging behaviour of chick-rearing Rhinoceros Auklets Cerorhinca monocerata at Teuri Island, Japan, determined by acceleration-depth recording micro data loggers. Journal of Avian Biology 34: 282-287. doi:10.1034/j.1600-048X.2003.03134.x

KIKUCHI, D.M., WATANUKI, Y., SATO, N., HOSHINA, K., TAKAHASHI, A. & WATANABE, Y.Y. 2015. Strouhal number for flying and swimming in Rhinoceros Auklets Cerorhinca monocerata. Journal of Avian Biology 46: 406-411. doi:10.1111/jav.00642

KRIJGSVELD, K.L., FIJN, R.C., JAPINK, M. ET AL. 2011. Effect studies Offshore Wind Farm Egmond aan Zee: Final report on fluxes, flight altitudes and behaviour of flying birds. Bureau Waardenburg Report 10-219. Culemborg, The Netherlands: Bureau Waardenburg.

OKADO, J., ITO, M. & WATANUKI, Y. 2019. Status of seabirds on Daikoku Island, Hokkaido. Journal of the Yamashina Institute for Ornithology 51: 95-104 (in Japanese with English abstract). doi:10.3312/jyio.51.95

PÉRON, G., CALABRESE, J.M., DURIEZ, O. ET AL. 2020. The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Animal Biotelemetry 8: article 5. doi:10.1186/s40317-020-00194-z

PIERSMA, T., HEDENSTRÖM, A. & BRUGGEMANN, J.H. 1997. Climb and flight speeds of shorebirds embarking on an intercontinental flight; do they achieve the predicted optimal behaviour? Ibis 139: 299-304. doi:10.1111/j.1474-919x.1997.tb04628.x

R CORE TEAM. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

SANZENBACHER, P.M., COOPER, B.A., PLISSNER, J.H. & BOND, J. 2014. Intra-annual patterns in passage rates and flight altitudes of Marbled Murrelets Brachyramphus marmoratus at inland sites in Northern California. Marine Ornithology 42: 169-174.

TARROUX, A., WEIMERSKIRCH, H., WANG, S.-H. ET AL. 2016. Flexible flight response to challenging wind conditions in a commuting Antarctic seabird: Do you catch the drift? Animal Behaviour 113: 99-112. doi:10.1016/j.anbehav.2015.12.021

THAXTER, C.B., ROSS-SMITH, V.H. & COOK, A.S.C.P. 2015. How high do birds fly? A review of current datasets and an appraisal of current methodologies for collecting flight height data: Literature review. BTO Research Report no. 666 for Natural England and The Crown Estate. Thetford, UK: British Trust for Ornithology.

TUCKER, V.A. & SCHMIDT-KOENIG, K. 1971. Flight speeds of birds in relation to energetics and wind directions. The Auk 88: 97-107.

WILKINSON, B.P., JAHNCKE, J., WARZYBOK, P., BRADLEY, R.W. & SHAFFER, S.A. 2018. Variable utilization of shelf break-associated habitats by chick-brooding Rhinoceros Auklets in the California Current System. Marine Ecology Progress Series 590: 211-226. doi:10.3354/MEPS12500

WOOD, S.N. 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 99: 673-686.

YONEHARA, Y., GOTO, Y., YODA, K. ET AL. 2016. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction. Proceedings of the National Academy of Sciences 113: 9039-9044. doi:10.1073/pnas.1523853113

ZAVALAGA, C.B., HALLS, J.N., MORI, G.P., TAYLOR, S.A. & DELL'OMO, G. 2010. At-sea movement patterns and diving behavior of Peruvian Boobies Sula variegata in northern Peru. Marine Ecology Progress Series 404: 259-274. doi:10.3354/meps08490

Search by author or title:

Browse previous volumes: