Menu

Volume 51, No. 2

Search by author or title:

Estimating the impact of marine threats to seabird recovery after predator eradication


Authors

STEPHANIE B. BORRELLE1, HOLLY P. JONES2, YVAN RICHARD3 & ROBERTO SALGUERO-GÓMEZ4,5,6
1BirdLife International, Pacific Secretariat, Suva, Fiji (stephborrelle@gmail.com)
2Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, 155 Castle Drive, DeKalb, Illinois, 60115, USA
3Dragonfly Data Science, 158 Victoria Street, Wellington, New Zealand
4Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
5Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, 4071, Queensland, Australia
6Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock, 18057, Germany

Citation

BORRELLE, S.B., JONES, H.P., RICHARD, Y. & SALGUERO-GÓMEZ, R. 2023. Estimating the impact of marine threats to seabird recovery after predator eradication. Marine Ornithology 51: 225 - 236

Received 01 August 2022, accepted 22 May 2023

Date Published: 2023/10/15
Date Online: 2023/10/10
Key words: Climate change, comparative phylogenetic analysis, conservation, fisheries bycatch, plastic pollution, restoration

Abstract

Pelagic seabirds are one of the most threatened taxa due to sustained and intensifying threats at their breeding sites on land and when foraging at sea. Predator eradication at seabird breeding sites has become a key strategy for the long-term conservation and viability of seabird populations. However, the extent to which increasing marine threats (i.e., those causing excess mortality such as fisheries bycatch, plastic ingestion, climate change/prey depletion) impact recovery remains poorly understood. We used computer simulations to model demographic data obtained from a review of existing databases to explore the impact of direct marine threats to seabird recovery following land-based predator eradication. Using the resulting parameters, we explored the impact of multiple marine threats to the population growth rates of 16 seabird species from 36 colonies worldwide. Next, we tested whether and which seabirds’ phylogenetically conserved traits could predict risk to multiple marine threats. The majority (88%) of examined colonies are projected to recover despite multiple marine threats, in the absence of invasive predators. We suggest that phylogenetically conserved traits (e.g., body mass) and species’ ecological descriptors (e.g., foraging strategy) are not good predictors of how interacting marine threats may affect population recovery. In the absence of robust at-sea mortality data or reliable predictors of risk from several at-sea sources of mortality, monitoring population recovery for seabirds is a critical element of seabird island restoration projects. Our conclusions can shape how managers implement additional conservation actions for species that fail to recover following predator eradication.

References


BÆRUM, K.M., ANKER-NILSSEN, T., CHRISTENSEN-DALSGAARD, S., FANGEL, K., WILLIAMS, T. & VØLSTAD, J.H. 2019. Spatial and temporal variations in seabird bycatch: Incidental bycatch in the Norwegian coastal gillnet-fishery. PLoS One 14: e0212786. doi:10.1371/journal.pone.0212786

BARBRAUD, C., ROLLAND, V., JENOUVRIER, S., NEVOUX, M., DELORD, K. & WEIMERSKIRCH, H. 2012. Effects of climate change and fisheries bycatch on Southern Ocean seabirds: A review. Marine Ecology Progress Series 454: 285–307. doi:10.3354/meps09616

BARTUMEUS, F., GIUGGIOLI, L., LOUZAO, M., BRETAGNOLLE, V., ORO, D. & LEVIN, S.A. 2010. Fishery discards impact on seabird movement patterns at regional scales. Current Biology 20: 215–222. doi:10.1016/j.cub.2009.11.073

BELDA, E.J. & SÁNCHEZ, A. 2001. Seabird mortality on longline fisheries in the western Mediterranean: Factors affecting bycatch and proposed mitigating measures. Biological Conservation 98: 357–363. doi:10.1016/S0006-3207(00)00178-6

BIRDLIFE INTERNATIONAL. 2020. Data Zone: Species Distribution Data. Cambridge, UK: BirdLife International. [Accessed at http://datazone.birdlife.org/species/requestdis on 15 June 2020].

BIRDLIFE INTERNATIONAL. 2021. Data Zone: Taxonomy, version 6.0. Cambridge, UK: BirdLife International. [Accessed at http://datazone.birdlife.org/species/taxonomy on 28 March 2021].

BOND, A.L. & LAVERS, J.L. 2014. Climate change alters the trophic niche of a declining apex marine predator. Global Change Biology 20: 2100–2107. doi:10.1111/gcb.12554

BORRELLE, S.B., BOERSCH-SUPAN, P.H., GASKIN, C.P. & TOWNS, D.R. 2018. Influences on recovery of seabirds on islands where invasive predators have been eradicated, with a focus on Procellariiformes. Oryx 52: 346–358. doi:10.1017/S0030605316000880

BROOKE, M.D.L., BONNAUD, E., DILLEY, B.J. ET AL. 2018. Seabird population changes following mammal eradications on islands. Animal Conservation 21): 3–12. doi:10.1111/acv.12344

BROOKE, M.D.L., O’CONNELL, T.C., WINGATE, D., MADEIROS, J., HILTON, G.M. & RATCLIFFE, N. 2010. Potential for rat predation to cause decline of the globally threatened Henderson Petrel Pterodroma atrata: Evidence from the field, stable isotopes and population modelling. Endangered Species Research 11: 47–59. doi:10.3354/esr00249

BURTHE, S.J., WANLESS, S., NEWELL, M.A., BUTLER, A. & DAUNT, F. 2014. Assessing the vulnerability of the marine bird community in the western North Sea to climate change and other anthropogenic impacts. Marine Ecology Progress Series 507: 277–295. doi:10.3354/meps10849

BUXTON, R.T., JONES, C., MOLLER, H. & TOWNS, D.R. 2014. Drivers of seabird population recovery on New Zealand islands after predator eradication. Conservation Biology 28: 333–344. doi:10.1111/cobi.12228

CEBALLOS, G., EHRLICH, P.R. & DIRZO, R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114: E6089–E6096. doi:10.1073/pnas.1704949114

CHAUDHARY, V. & OLI, M.K. 2020. A critical appraisal of population viability analysis. Conservation Biology 34: 26–40. doi:10.1111/cobi.13414

CLUKEY, K.E., LEPCZYK, C.A., BALAZS, G.H. ET AL. 2018. Persistent organic pollutants in fat of three species of Pacific pelagic longline caught sea turtles: Accumulation in relation to ingested plastic marine debris. Science of the Total Environment 610–611: 402–411. doi:10.1016/j.scitotenv.2017.07.242

CODINA-GARCÍA, M., MILITÃO, T., MORENO, J. & GONZÁLEZ-SOLÍS, J. 2013. Plastic debris in Mediterranean seabirds. Marine Pollution Bulletin 77: 220–226. doi:10.1016/j.marpolbul.2013.10.002

COOKE R.S., EIGENBROD F. & BATES A.E. 2019. Projected losses of global mammal and bird ecological strategies. Nature Communications 10: 2279. doi:10.1038/s41467-019-10284-z

DIAS, M.P., MARTIN, R., PEARMAIN, E.J. ET AL. 2019. Threats to seabirds: A global assessment. Biological Conservation 237: 525–537. doi:10.1016/j.biocon.2019.06.033

DILLINGHAM, P.W., MOORE, J.E., FLETCHER, D. ET AL. 2016. Improved estimation of intrinsic growth rmax for long-lived species: Integrating matrix models and allometry. Ecological Applications 26: 322–333. doi:10.1890/14-1990

FRECKLETON, R.P., HARVEY, P.H. & PAGEL, M. 2002. Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist 160: 712–726. doi:10.1086/343873

FREDERIKSEN, M., HARRIS, M.P., DAUNT, F., ROTHERY, P. & WANLESS, S. 2004. Scale‐dependent climate signals drive breeding phenology of three seabird species. Global Change Biology 10: 1214–1221. doi:10.1111/j.1529-8817.2003.00794.x

FURNESS, R.W. 1999. Are industrial fisheries a threat to seabird populations? In: ADAMS, N. & SLOTOW, R. (Eds.) Proceedings of the 22nd International Ornithological Congress, Durban, 16–22 August 1998. Johannesburg, South Africa: BirdLife South Africa. [Accessed at https://www.internationalornithology.org/PROCEEDINGS_Durban/Symposium/S12/S12.2.htm on 05 April 2022].

GASTON, K.J. & BLACKBURN, T.M. 1995. Birds, body size and the threat of extinction. Philosophical Transactions of the Royal Society B 347: 205–212. doi:10.1098/rstb.1995.0022

GENOVART, M., DOAK, D.F., IGUAL, J.-M., SPONZA, S., KRALJ, J. & ORO, D. 2017. Varying demographic impacts of different fisheries on three Mediterranean seabird species. Global Change Biology 23: 3012–3029. doi:10.1111/gcb.13670

GIANUCA, D., PHILLIPS, R.A., TOWNLEY, S. & VOTIER, S.C. 2017. Global patterns of sex- and age-specific variation in seabird bycatch. Biological Conservation 205: 60–76. doi:10.1016/j.biocon.2016.11.028

GIUDICI, A., NAVARRO, J., JUSTE, C. & GONZÁLEZ-SOLÍS, J. 2010. Physiological ecology of breeders and sabbaticals in a pelagic seabird. Journal of Experimental Marine Biology and Ecology 389: 13–17. doi:10.1016/j.jembe.2010.04.002

GRÉMILLET, D., PONCHON, A., PALECZNY, M., PALOMARES, M.-L.D., KARPOUZI, V. & PAULY, D. 2018. Persisting worldwide seabird-fishery competition despite seabird community decline. Current Biology 28: 4009–4013.e2. doi:10.1016/j.cub.2018.10.051

ISMAR, S.M.H., BAIRD, K.A., GASKIN, C.P. ET AL. 2014. A case of natural recovery after the removal of invasive predators—community assemblage changes in the avifauna of Burgess Island. Notornis 61: 188–195.

IUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE). 2021. The IUCN Red List of Threatened Species. Version 2021-2. Cambridge, UK: IUCN. [Accessed at https://www.iucnredlist.org on 12 May 2021.]

JENOUVRIER, S. 2013. Impacts of climate change on avian populations. Global Change Biology 19: 2036–2057. doi:10.1111/gcb.12195

JETZ, W., THOMAS, G.H., JOY, J.B., HARTMANN, K. & MOOERS, A.O. 2012. The global diversity of birds in space and time. Nature 491: 444–448. doi:10.1038/nature11631

JONES, H.P., HOLMES, N.D., BUTCHART, S.H.M. ET AL. 2016. Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences 113: 4033–4038. doi:10.1073/pnas.1521179113

JONES, H.P., TERSHY, B.R., ZAVALETA, E.S. ET AL. 2008. Severity of the effects of invasive rats on seabirds: A global review. Conservation Biology 22: 16–26. doi:10.1111/j.1523-1739.2007.00859.x

JOSEPH, L. & BÉLISLE, P. 2012. Gamma parms from quantiles. Montreal, Canada: Montreal General Hospital. [Accessed at http://www.medicine.mcgill.ca/epidemiology/joseph/pbelisle/GammaParmsFromQuantiles.html on 15 June 2019.]

KAPPES, P.J. & JONES, H.P. 2014. Integrating seabird restoration and mammal eradication programs on islands to maximize conservation gains. Biodiversity and Conservation 23: 503–509. doi:10.1007/s10531-013-0608-z

KRÜGER, L., PEREIRA, J.M., PAIVA, V.H. & RAMOS, J.A. 2019. Personality influences foraging of a seabird under contrasting environmental conditions. Journal of Experimental Marine Biology and Ecology 516: 123–131. doi:10.1016/j.jembe.2019.04.003

LAVERS, J.L., BOND, A.L. & HUTTON, I. 2014. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): Implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environmental Pollution 187: 124–129. doi:10.1016/j.envpol.2013.12.020

LAVERS, J.L., WILCOX, C. & DONLAN, C.J. 2010. Bird demographic responses to predator removal programs. Biological Invasions 12: 3839–3859. doi:10.1007/s10530-010-9776-x

LAWLER, J.J., CAMPBELL, S.P., GUERRY, A.D., KOLOZSVARY, M.B., O’CONNOR, R.J. & SEWARD, L.C.N. 2002. The scope and treatment of threats in endangered species recovery plans. Ecological Applications 12: 663–667. doi:10.2307/3060975

LEBRETON, J.-D., DEVILLARD, S., POPY, S., DESPREZ, M., BESNARD, A. & GAILLARD, J.-M. 2012. Towards a vertebrate demographic data bank. Journal of Ornithology 152: 617–624. doi:10.1007/s10336-010-0582-0

NIEL, C. & LEBRETON, J.-D. 2005. Using demographic invariants to detect overharvested bird populations from incomplete data. Conservation Biology 19: 826–835. doi:10.1111/j.1523-1739.2005.00310.x

NISHIZAWA, B., THIEBOT, J.-B., SATO, F. ET AL. 2021. Mapping marine debris encountered by albatrosses tracked over oceanic waters. Scientific Reports 11: 19944. doi:10.1038/s41598-021-90417-x

ORME, D. 2018. caper: Comparative analyses of phylogenetics and evolution in R. Version 1.0.1. London, UK: Imperial College.

ORO, D. 2014. Seabirds and climate: Knowledge, pitfalls, and opportunities. Frontiers in Ecology and Evolution 2: 79. doi:10.3389/fevo.2014.00079

PALECZNY, M., HAMMILL, E., KARPOUZI, V. & PAULY, D. 2015. Population trend of the world’s monitored seabirds, 1950–2010. PLoS One 10: e0129342. doi:10.1371/journal.pone.0129342

PANIW, M., OZGUL, A. & SALGUERO‐GÓMEZ, R. 2018. Interactive life‐history traits predict sensitivity of plants and animals to temporal autocorrelation. Ecology Letters 21: 275–286. doi:10.1111/ele.12892

PARADIS, E., CLAUDE, J. & STRIMMER, K. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. doi:10.1093/bioinformatics/btg412

PROVENCHER, J., BORRELLE, S.B., SHERLEY, R.B. ET AL. 2019. Seabirds. In: SHEPPARD, C. (Ed). World Seas: An Environmental Evaluation. Volume III: Ecological Issues and Environmental Impacts. 2nd Edition. San Diego, USA: Elsevier, Inc. doi:1016/B978-0-12-805052-1.00007-3

PROVENCHER, J.F., GASTON, A.J., MALLORY, M.L., O’HARA, P.D. & GILCHRIST, H.G. 2010. Ingested plastic in a diving seabird, the Thick-billed Murre (Uria lomvia), in the eastern Canadian Arctic. Marine Pollution Bulletin 60: 1406–1411. doi:10.1016/j.marpolbul.2010.05.017

R CORE TEAM. 2013. R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.

REVELL, L.J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223. doi:10.1111/j.2041-210X.2011.00169.x

RICHARD, Y. & ABRAHAM, E.R. 2013. Application of Potential Biological Removal Methods to Seabird Populations. New Zealand Aquatic Environment and Biodiversity Report 108. Wellington, New Zealand: Marine Conservation Services, Department of Conservation.

RICHARD, Y., ABRAHAM, E.R. & BERKENBUSCH, K. 2017. Assessment of the Risk of Commercial Fisheries to New Zealand Seabirds, 2006–07 to 2014–15. New Zealand Aquatic Environment and Biodiversity Report 191. Wellington, New Zealand: Ministry for Primary Industries, Manatū Ahu Matua.

RODRÍGUEZ, A., ARCOS, J.M., BRETAGNOLLE, V. ET AL. 2019. Future directions in conservation research on petrels and shearwaters. Frontiers in Marine Science 6: 94. doi:10.3389/fmars.2019.00094

ROWE, S. 2010. Level 1 Risk Assessment for Incidental Seabird Mortality Associated with New Zealand Fisheries in the NZ-EEZ. Wellington, New Zealand: Marine Conservation Services, Department of Conservation.

RYAN, P.G. 1987. The incidence and characteristics of plastic particles ingested by seabirds. Marine Environmental Research 23: 175–206. doi:10.1016/0141-1136(87)90028-6

RYAN, P.G. 2019. Ingestion of plastics by marine organisms. In: TAKADA, H. & KARAPANAGIOTI, H.K. (Eds). Hazardous Chemicals Associated with Plastics in the Marine Environment. Cham, Switzerland: Springer.

SÆTHER, B.-E. & ENGEN, S. 2010. Population analyses. In MØLLER, A.P., FIEDLER, W. & BERTHOLD, P. (Eds.). Effects of Climate Change on Birds. Oxford, UK: Oxford University Press.

SALGUERO‐GÓMEZ. R., JONES, O.R., ARCHER, C.R. ET AL. 2016. COMADRE: A global data base of animal demography. Journal of Animal Ecology 85: 371–384. doi:10.1111/1365-2656.12482

SCHREIBER, E.A. & BURGER, J. 2002. Biology of Marine Birds. Boca Raton, USA: CRC Press.

SLOTTERBACK, J.W. 2020. Band-rumped Storm-Petrel (Oceanodroma castro), version 1.0. In: POOLE, A.F. (Ed.). Birds of the World. Ithaca, USA: Cornell Lab of Ornithology. doi:10.2173/bow.barpet.01.1

SUTHERLAND, W.J., BELLINGAN, L., BELLINGHAM, J.R. ET AL. 2012. A collaboratively-derived science-policy research agenda. PLoS One 7: e31824. doi:10.1371/journal.pone.0031824

SYMONDS, M.R.E. & BLOMBERG, S.P. 2014. A primer on phylogenetic generalised least squares. In: GARAMSZEGI, L.Z. (Ed.). Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Berlin, Germany: Springer-Verlag.

TANAKA, K., TAKADA, H., YAMASHITA, R., MIZUKAWA, K., FUKUWAKA, M. & WATANUKI, Y. 2015. Facilitated leaching of additive-derived PBDEs from plastic by seabirds’ stomach oil and accumulation in tissues. Environmental Science and Technology. 49: 11799–11807. doi:10.1021/acs.est.5b01376

TOWNS, D.R., BYRD, G.V., JONES, H.P., RAUZON, M.J., RUSSELL, J.C. & WILCOX, C. 2011. Impacts of introduced predators on seabirds. In: MULDER, C.P.H, ANDERSON, W.B., TOWNS, D.R. & BELLINGHAM, P.J. (Eds.). Seabird Islands: Ecology, Invasion, and Restoration. New York, USA: Oxford University Press.

VAN FRANEKER, J.A. & LAW, K.L. 2015. Seabirds, gyres and global trends in plastic pollution. Environmental Pollution 203: 89–96. doi:10.1016/j.envpol.2015.02.034

VOTIER, S.C., HATCHWELL, B.J., MEARS, M. & BIRKHEAD, T.R. 2009. Changes in the timing of egg-laying of a colonial seabird in relation to population size and environmental conditions. Marine Ecology Progress Series 393: 225–233. doi:10.3354/meps08258

WARHAM, J. 1990. The Petrels: Their Ecology and Breeding Systems. London, UK: A & C Black.

WEIMERSKIRCH, H. 2002. Seabird demography and its relationship with the marine environment. In: SCHREIBER, E. A. & BURGER J. (Eds.). Biology of Marine Birds. Boca Raton, USA: CRC Press.

WEIMERSKIRCH, H., FILIPPI, D.P., COLLET, J., WAUGH, S.M. & PATRICK, S.C. 2018. Use of radar detectors to track attendance of albatrosses at fishing vessels. Conservation Biology 32: 240–245. doi:10.1111/cobi.12965

WILCOX, C., HOBDAY, A.J. & CHAMBERS, L.E. 2018. Using expert elicitation to rank ecological indicators for detecting climate impacts on Australian seabirds and pinnipeds. Ecological Indicators 95: 637–644. doi:10.1016/j.ecolind.2018.07.019

WILCOX, C., VAN SEBILLE, E. & HARDESTY, B.D. 2015. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proceedings of the National Academy of Sciences 112: 11899–11904. doi:10.1073/pnas.1502108112

Search by author or title:

Browse previous volumes: