Key words: automation, artificial intelligence, big data, Common Guillemot, information technology, long-term studies, seabirds
References
Adeogun, A. O., Chukwuka, A. V., Fadahunsi, A. A., Okali, K. D., Oluwakotanmi, P. G., Ibor, O. R., Emasoga, P., & Egware, T. U. (2022). Bird feathers as a non-invasive method for ecotoxicological monitoring; a rapid review.
Zoologist (The), 20(1), 26-40.
https://doi.org/10.4314/tzool.v20i1.5
Ashbrook, K., Wanless, S., Harris, M. P., & Hamer, K. C. (2010). Impacts of poor food availability on positive density dependence in a highly colonial seabird.
Proceedings of the Royal Society B,
277(1692), 2355-2360.
https://doi.org/10.1098/rspb.2010.0352
Ballard, G., Dugger, K. M., Nur, N., & Ainley, D. G. (2010). Foraging strategies of Adélie Penguins: Adjusting body condition to cope with environmental variability.
Marine Ecology Progress Series, 405, 287-302.
https://doi.org/10.3354/meps08514
Barbraud, C., & Weimerskirch, H. (2006). Antarctic birds breed later in response to climate change.
Proceedings of the National Academy of Sciences, 103(16), 6248-6251.
https://doi.org/10.1073/pnas.0510397103
Becker, P. H., Voigt, C. C., Arnold, J. M., & Nagel, R. (2006). A non-invasive technique to bleed incubating birds without trapping: A blood-sucking bug in a hollow egg.
Journal of Ornithology, 147(1), 115-118.
https://doi.org/10.1007/s10336-005-0027-3
Becker, P. H., & Wendeln, H. (1997). A new application for transponders in population ecology of the Common Tern.
The Condor, 99(2), 534-538.
http://www.jstor.org/stable/1369963
Berglund, P.-A. (2016). Evaluating ten years of ecological seabird research in the Baltic Sea. [Master's thesis, Stockholm University].
Bodey, T. W., Cleasby, I. R., Bell, F., Parr, N., Schultz, A., Votier, S. C., & Bearhop, S. (2018). A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data.
Methods in Ecology and Evolution, 9(4), 946-955.
https://doi.org/10.1111/2041-210X.12934
Browning, E., Bolton, M., Owen, E., Shoji, A., Guilford, T., & Freeman, R. (2018). Predicting animal behaviour using deep learning: GPS data alone accurately predict diving in seabirds.
Methods in Ecology and Evolution, 9(3), 681-692.
https://doi.org/10.1111/2041-210X.12926
Carlsen, A. A., Casini, M., Masnadi, F., Olsson, O., Hejdström, A., & Hentati-Sundberg, J. (2024). Autonomous data sampling for high-resolution spatiotemporal fish biomass estimates.
Ecological Informatics 84(December 2024): Article 102852.
https://doi.org/10.1016/j.ecoinf.2024.102852
Corcoran, E., Winsen, M., Sudholz, A., & Hamilton, G. (2021). Automated detection of wildlife using drones: Synthesis, opportunities and constraints.
Methods in Ecology and Evolution, 12(6), 1103-1114.
https://doi.org/10.1111/2041-210X.13581
Croxall, J. P. (Ed.). (1987). Seabirds: Feeding ecology and role in marine ecosystems. Cambridge University Press.
Cury, P. M., Boyd, I. L., Bonhommeau, S., Anker-Nilssen, T., Crawford, R. J. M., Furness, R. W., Mills, J. A., Murphy, E. J., Österblom, H., Paleczny, M., Piatt, J. F., Roux, J.-P., Shannon, L., & Sydeman, W. J. (2011). Global seabird response to forage fish depletion−One-third for the birds.
Science, 334(6063), 1703-1706.
https://doi.org/10.1126/science.1212928
De Robertis, A., Lawrence-Slavas, N., Jenkins, R., Wangen, I., Mordy, C. W., Meinig, C., Levine, M., Peacock, D., & Tabisola, H. (2019). Long-term measurements of fish backscatter from Saildrone unmanned surface vehicles and comparison with observations from a noise-reduced research vessel.
ICES Journal of Marine Science, 76(7), 2459-2470.
https://doi.org/10.1093/icesjms/fsz124
Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M. A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C. K., Pijanowski, B. C., Randerson, J. T., Read, E. K., Tredennick, A. T., Vargas, R., Weathers, K. C., & White, E. P. (2018). Iterative near-term ecological forecasting: Needs, opportunities, and challenges.
Proceedings of the National Academy of Sciences, 115(7), 1424-1432.
https://doi.org/10.1073/pnas.1710231115
Edney, A. J., & Wood, M. J. (2021). Applications of digital imaging and analysis in seabird monitoring and research.
Ibis, 163(2), 317-337.
https://doi.org/10.1111/ibi.12871
Edwards, E. W. J., Quinn, L. R., Wakefield, E. D., Miller, P. I., & Thompson, P. M. (2013). Tracking a Northern Fulmar from a Scottish nesting site to the Charlie-Gibbs Fracture Zone: Evidence of linkage between coastal breeding seabirds and Mid-Atlantic Ridge feeding sites.
Deep-Sea Research Part II, 98B, 438-444.
https://doi.org/10.1016/j.dsr2.2013.04.011
Evans, T. J., Kadin, M., Olsson, O., & Åkesson, S. (2013). Foraging behaviour of Common Murres in the Baltic Sea, recorded by simultaneous attachment of GPS and time-depth recorder devices.
Marine Ecology Progress Series, 475, 277-289.
https://doi.org/10.3354/meps10125
Evans, J. C., Torney, C. J., Votier, S. C., & Dall, S. R. X. (2019). Social information use and collective foraging in a pursuit diving seabird.
PLoS ONE, 14(9), Article e0222600.
https://doi.org/10.1371/journal.pone.0222600
Evans, T. J., Young, R. C., Watson, H., Olsson, O., & Åkesson, S. (2020). Effects of back-mounted biologgers on condition, diving and flight performance in a breeding seabird.
Journal of Avian Biology, 51(11), Article e02509.
https://doi.org/10.1111/jav.02509
Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., Sachser, N., Lindenberger, U., & Kempermann, G. (2013). Emergence of individuality in genetically identical mice.
Science, 340(6133), 756-759.
https://doi.org/10.1126/science.1235294
Gaston, A. J., Elliott, K. H., Ropert-Coudert, Y., Kato, A., Macdonald, C. A., Mallory, M. L., & Gilchrist, H. G. (2013). Modeling foraging range for breeding colonies of Thick-billed Murres
Uria lomvia in the Eastern Canadian Arctic and potential overlap with industrial development.
Biological Conservation, 168, 134-143.
https://doi.org/10.1016/j.biocon.2013.09.018
Grémillet, D., Ponchon, A., Paleczny, M., Palomares, M.-L. D., Karpouzi, V. S., & Pauly, D. (2018). Persisting worldwide seabird-fishery competition despite seabird community decline.
Current Biology, 28(24), 4009-4013.
https://doi.org/10.1016/j.cub.2018.10.051
Hanes, M., & Kad, S. (2022). Real-time tracking and pose estimation of guillemots [MSc thesis, Chalmers University of Technology]. Chalmers ODR Student Theses.
Harris, M. P., Albon, S. D., & Wanless, S. 2016. Age-related effects on breeding phenology and success of Common Guillemots
Uria aalge at a North Sea colony.
Bird Study 63(3), 311-318.
https://doi.org/10.1080/00063657.2016.1202889
Hentati-Sundberg, J., Berglund, P.-A., Hejdström, A., & Olsson, O. (2021a). COVID-19 lockdown reveals tourists as seabird guardians.
Biological Conservation, 254(February 2021), 108950.
https://doi.org/10.1016/j.biocon.2021.108950
Hentati-Sundberg, J., Evans, T., Österblom, H., Hjelm, J., Larson, N., Bakken, V., Svenson, A., & Olsson, O. (2018). Fish and seabird spatial distribution and abundance around the largest seabird colony in the Baltic Sea.
Marine Ornithology, 46(1), 61-68.
http://doi.org/10.5038/2074-1235.46.1.1250
Hentati-Sundberg, J., Melchiori, S., Berglund, P.-A., & Olsson, O. (2023a). Eagle effects on seabird productivity: Effects of a natural experiment.
Biological Conservation, 284(August 2023), 110145.
https://doi.org/10.1016/j.biocon.2023.110145
Hentati-Sundberg, J., Olin, A. B., Evans, T. J., Isaksson, N., Berglund, P.-A., & Olsson, O. (2021b). A mechanistic framework to inform the spatial management of conflicting fisheries and top predators.
Journal of Applied Ecology, 58(1), 125-134.
https://doi.org/10.1111/1365-2664.13759
Hentati-Sundberg, J., Olin, A. B., Reddy, S., Berglund, P.-A., Svensson, E., Reddy, M., Kasarareni, S., Carlsen, A. A., & Hanes, M., Kad, S., & Olsson, O. (2023b). Seabird surveillance: Combining CCTV and artificial intelligence for monitoring and research.
Remote Sensing in Ecology and Conservation, 9(4), 568-581.
https://doi.org/10.1002/rse2.329
Hentati-Sundberg, J., Österblom, H., Kadin, M., Jansson, Å., & Olsson, O. (2012). The Karlsö Murre lab methodology can stimulate innovative seabird research.
Marine Ornithology, 40(1), 11-16.
http://doi.org/10.5038/2074-1235.40.1.955
Hipfner, J. M., Blight, L. K., Lowe, R. W., Wilhelm, S. I., Robertson, G. J., Barrett, R. T., Anker-Nilssen, T., & Good, T. P. (2012). Unintended consequences: How the recovery of sea eagle
Haliaeetus spp. populations in the northern hemisphere is affecting seabirds.
Marine Ornithology, 40(1), 39-52.
http://doi.org/10.5038/2074-1235.40.1.959
Jenouvrier, S., Barbraud, C., & Weimerskirch, H. (2005). Long-term contrasted responses to climate of two Antarctic seabird species.
Ecology, 86(11), 2889-2903.
https://doi.org/10.1890/05-0514
Kadin, M., Österblom, H., Hentati-Sundberg, J., & Olsson, O. (2012). Contrasting effects of food quality and quantity on a marine top predator.
Marine Ecology Progress Series, 444, 239-249.
https://doi.org/10.3354/meps09417
Kempermann, G., Lopes, J. B., Zocher, S., Schilling, S., Ehret, F., Garthe, A., Karasinsky, A., Brandmaier, A. M., Lindenberger, U., Winter, Y., & Overall, R. W. (2022). The individuality paradigm: Automated longitudinal activity tracking of large cohorts of genetically identical mice in an enriched environment.
Neurobiology of Disease, 175(December 2022), Article 105916.
https://doi.org/10.1016/j.nbd.2022.105916
Korpela, J., Suzuki, H., Matsumoto, S., Mizutani, Y., Samejima, M., Maekawa, T., Nakai, J., & Yoda, K. (2020). Machine learning enables improved runtime and precision for bio-loggers on seabirds.
Communications Biology, 3, Article 633 .
https://doi.org/10.1038/s42003-020-01356-8
Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouvé, C., Besson, D., Chastel, O., & Weimerskirch, H. (2010). Patterns of aging in the long-lived Wandering Albatross.
Proceedings of the National Academy of Sciences, 107(14), 6370-6375.
https://doi.org/10.1073/pnas.0911181107
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., & Kim, T.-K. (2021). Multiple object tracking: A literature review.
Artificial Intelligence, 293(April 2021), Article 103448.
https://doi.org/10.1016/j.artint.2020.103448
Michael, P. E., Thomson, R., Barbraud, C., Delord, K., De Grissac, S., Hobday, A. J., Strutton, P. G., Tuck, G. N., Weimerskirch, H., & Wilcox, C. (2017). Illegal fishing bycatch overshadows climate as a driver of albatross population decline.
Marine Ecology Progress Series, 579, 185-199.
https://doi.org/10.3354/meps12248
Olin, A. B., Dück, L., Berglund, P.-A., Karlsson, E., Bohm, M., Olsson, O., & Hentati-Sundberg, J. (2024). Breeding failures and reduced nest attendance in response to heat stress in a high-latitude seabird.
Marine Ecology Progress Series, 737, 147-160.
https://doi.org/10.3354/meps14244
Oliver, R. Y., Iannarilli, F., Ahumada, J., Fegraus, E., Flores, N., Kays, R., Birch, T., Ranipeta, A., Rogan, M. S., Sica, Y. V., & Jetz, W. (2023). Camera trapping expands the view into global biodiversity and its change.
Philosophical Transactions of the Royal Society B, 378(1881), Article 20220232.
https://doi.org/10.1098/rstb.2022.0232
Olsson, O., & Hentati-Sundberg, J. (2017). Population trends and status of four seabird species (
Uria aalge, Alca torda, Larus fuscus, Larus argentatus) at Stora Karlsö in the Baltic Sea.
Ornis Svecica, 27(2-4), 64-93.
https://doi.org/10.34080/os.v27.19558
Österblom, H., Casini, M., Olsson, O., & Bignert, A. (2006). Fish, seabirds and trophic cascades in the Baltic Sea.
Marine Ecology Progress Series, 323, 233-238.
https://doi.org/10.3354/meps323233
Oswald, S. A., & Arnold, J. M. (2012). Direct impacts of climatic warming on heat stress in endothermic species: Seabirds as bioindicators of changing thermoregulatory constraints.
Integrative Zoology, 7(2), 121-136.
https://doi.org/10.1111/j.1749-4877.2012.00287.x
Patterson, A., Gilchrist, H. G., Benjaminsen, S., Bolton, M., Bonnet-Lebrun, A. S., Davoren, G. K., Descamps, S., Erikstad, K. E., Frederiksen, M., Gaston, A. J., Gulka, J., Hentati-Sundberg, J., Huffeldt, N. P., Johansen, K. L., Labansen, A. L., Linnebjerg, J. F., Love, O. P., Mallory, M. L., Merkel, F. R., … Elliott, K. H. (2022). Foraging range scales with colony size in high-latitude seabirds.
Current Biology, 32(17), 3800-3807.
https://doi.org/10.1016/j.cub.2022.06.084
Quintana, F., Uhart, M. M., Gallo, L., Mattera, M. B., Rimondi, A., & Gómez-Laich, A. (2022). Heat-related massive chick mortality in an Imperial Cormorant
Leucocarbo atriceps colony from Patagonia, Argentina.
Polar Biology, 45(2), 275-284.
https://doi.org/10.1007/s00300-021-02982-6
Rebke, M., Coulson, T., Becker, P. H., & Vaupel, J. W. (2010). Reproductive improvement and senescence in a long-lived bird.
Proceedings of the National Academy of Sciences, 107(17), 7841-7846.
https://doi.org/10.1073/pnas.1002645107
Reed, T. E., Kruuk, L. E. B., Wanless, S., Frederiksen, M., Cunningham, E. J. A., & Harris, M. P. (2008). Reproductive senescence in a long-lived seabird: Rates of decline in late-life performance are associated with varying costs of early reproduction.
American Naturalist, 171(2), 89-101.
https://doi.org/10.1086/524957
Romero, L. M., & Fairhurst, G. D. (2016). Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future.
Comparative Biochemistry and Physiology A , 202, 112-122.
https://doi.org/10.1016/j.cbpa.2016.05.002
Saraux, C., & Chiaradia, A. (2022). Age-related breeding success in Little Penguins: A result of selection and ontogenetic changes in foraging and phenology.
Ecological Monographs, 92(1), Article e01495.
https://doi.org/10.1002/ecm.1495
Sarzo, B., Armero, C., Conesa, D., Hentati-Sundberg, J., & Olsson, O. (2019). Bayesian immature survival analysis of the largest colony of Common Murre (
Uria aalge) in the Baltic Sea.
Waterbirds, 42(3), 304-313.
https://doi.org/10.1675/063.042.0306
Sarzo, B., King, R., Conesa, D., & Hentati-Sundberg, J. (2021). Correcting bias in survival probabilities for partially monitored populations via integrated models.
Journal of Agricultural, Biological and Environmental Statistics, 26, 200-219.
https://doi.org/10.1007/s13253-020-00423-1
Schilling, A.-K., Mazzamuto, M. V., & Romeo, C. (2022). A Review of non-invasive sampling in wildlife disease and health research: What's new?
Animals, 12(13), Article 1719.
https://doi.org/10.3390/ani12131719
Sealy, S. G. (Ed.). (1990). Auks at sea. Cooper Ornithological Society.
Sequeira, A. M. M., Heupel, M. R., Lea, M.-A., Eguíluz, V. M., Duarte, C. M., Meekan, M. G., Thums, M., Calich, H. J., Carmichael, R. H., Costa, D. P., Ferreira, L. C., Fernandéz-Gracia, J., Harcourt, R., Harrison, A.-L., Jonsen, I., McMahon, C. R., Sims, D. W., Wilson, R. P., & Hays, G. C. (2019). The importance of sample size in marine megafauna tagging studies.
Ecological Applications, 29(6), Article e01947.
https://doi.org/10.1002/eap.1947
Steiner, U. K., & Gaston, A. J. (2005). Reproductive consequences of natal dispersal in a highly philopatric seabird.
Behavioral Ecology, 16(3), 634-639.
https://doi.org/10.1093/beheco/ari035
Strøm, H., Descamps, S., Ekker, M., Fauchald, P., & Moe, B. (2021). Tracking the movements of North Atlantic seabirds: Steps towards a better understanding of population dynamics and marine ecosystem conservation.
Marine Ecology Progress Series, 676, 97-116.
https://doi.org/10.3354/meps13801
Swart, S., Zietsman, J. J., Coetzee, J. C., Goslett, D. G., Hoek, A., Needham, D., & Monteiro, P. M. S. (2016). Ocean robotics in support of fisheries research and management.
African Journal of Marine Science, 38(4), 525-538.
https://doi.org/10.2989/1814232X.2016.1251971
Thiebault, A., Mullers, R. H. E., Pistorius, P. A. & Tremblay, Y. (2014). Local enhancement in a seabird: Reaction distances and foraging consequence of predator aggregations.
Behavioral Ecology 25(6), 1302-1310.
https://doi.org/10.1093/beheco/aru132
Thompson, P. M., & Ollason, J. C. (2001). Lagged effects of ocean climate change on fulmar population dynamics.
Nature, 413(6854), 417-420.
https://doi.org/10.1038/35096558
Tremblay, Y., Cherel, Y., Oremus, M., Tveraa, T., & Chastel, O. (2003). Unconventional ventral attachment of time-depth recorders as a new method for investigating time budget and diving behaviour of seabirds.
Journal of Experimental Biology, 206(11), 1929-1940.
https://doi.org/10.1242/jeb.00363
Votier, S. C., Birkhead, T. R., Oro, D., Trinder, M., Grantham, M. J., Clark, J. A., McCleery, R. H., & Hatchwell, B. J. (2008). Recruitment and survival of immature seabirds in relation to oil spills and climate variability.
Journal of Animal Ecology, 77(5), 974-983.
https://doi.org/10.1111/j.1365-2656.2008.01421.x
Wakefield, E. D., Bodey, T. W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., Dwyer, R. G., Green, J. A., Grémillet, D., Jackson, A. L., Jessopp, M. J., Kane, A., Langston, R. H. W., Lescroël, A., Murray, S., Le Nuz, M., Patrick, S. C., Péron, C., Soanes, L. M., … Hamer, K. C. (2013). Space partitioning without territoriality in gannets.
Science, 341(6141), 68-70.
https://doi.org/10.1126/science.1236077
Walter, T., & Couzin, I. D. (2021). TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual elds.
eLife, 10, Article e64000.
https://doi.org/10.7554/eLife.64000
Warzybok, P., Santora, J. A., Ainley, D. G., Bradley, R. W., Field, J. C., Capitolo, P. J., Carle, R. D., Elliott, M., Beck, J. N., McChesney, G. J., Hester, M. M., & Jahncke, J. (2018). Prey switching and consumption by seabirds in the central California Current upwelling ecosystem: Implications for forage fish management.
Journal of Marine Systems, 185(September 2018), 25-39.
https://doi.org/10.1016/j.jmarsys.2018.04.009
Weinstein, B. G., Garner, L., Saccomanno, V. R., Steinkraus, A., Ortega, A., Brush, K., Yenni, G., McKellar, A. E., Converse, R., Lippitt, C. D., Wegmann, A., Holmes, N. D., Edney, A. J., Hart, T., Jessopp, M. J., Clarke, R. H., Marchowski, D., Senyondo, H., Dotson, R., … Ernest, S. K. M. (2022). A general deep learning model for bird detection in high resolution airborne imagery.
Ecological Applications, 32(8), Article e2694.
https://doi.org/10.1002/eap.2694
Wilson, R. P., Börger, L., Holton, M. D., Scantlebury, D. M., Gómez-Laich, A., Quintana, F., Rosell, F., Graf, P. M., Williams, H., Gunner, R., Hopkins, L., Marks, N., Geraldi, N. R., Duarte, C. M., Scott, R., Strano, M. S., Robotka, H., Eizaguirre, C., Fahlman, A., & Shepard, E. L. C. (2020). Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal.
Journal of Animal Ecology, 89(1), 161-172.
https://doi.org/10.1111/1365-2656.13040
Žydelis, R., Bellebaum, J., Österblom, H., Vetemaa, M., Schirmeister, B., Stipniece, A., Dagys, M., van Eerden, M., & Garthe, S. (2009). Bycatch in gillnet fisheries - An overlooked threat to waterbird populations.
Biological Conservation, 142(7), 1269-1281.
https://doi.org/10.1016/j.biocon.2009.02.025