Menu

Volume 53, No. 1

Search by author or title:

Technological evolution generates new answers and new ways forward: A progress report from the first decade at the Karlsö Auk Lab.


Authors

JONAS HENTATI-SUNDBERG1, PER-ARVID BERGLUND2, AGNES B. OLIN1, ARON HEJDSTRÖM2, HENRIK ÖSTERBLOM3, ASTRID A. CARLSEN1, QUENTIN QUEIROS1, & OLOF OLSSON4
1Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden *(jonas.sundberg@slu.se)
2Baltic Seabird Project, Klintehamn, Sweden
3Royal Swedish Academy of Sciences, Stockholm, Sweden
4Stockholm Resilience Centre, Stockholm University, Sweden

Citation

Hentati-Sundberg, J., Berglund, P.-A., Olin, A. B., Hejdström, A., Österblom, H., Carlsen, A. A., Queiros, Q., & Olsson, O. 2025. Technological evolution generates new answers and new ways forward: A progress report from the first decade at the Karlsö Auk Lab. . Marine Ornithology 53: 21 - 33
http://doi.org/10.5038/2074-1235.53.1.1612

Received 29 February 2024, accepted 03 August 2024

Date Published: 2025/04/15
Date Online: 2025/01/12
Key words: automation, artificial intelligence, big data, Common Guillemot, information technology, long-term studies, seabirds

Abstract

In 2008, we built an artificial nesting construction for Common Murres Uria aalge, the Karlsö Auk Lab, on an island in the Baltic Sea (Hentati-Sundberg et al., 2012). The aim was to create an environment in which the birds could be readily monitored and accessed, and technological equipment easily installed. In this current paper, we report on murre recruitment to the Auk Lab over the first decade, assess the performance of the birds living on the lab compared to natural cliff ledges, and revisit the original research questions. We conclude that the tremendous developments in sensor technology (video surveillance, automated scales, thermal cameras, weather sensors) and artificial intelligence was not anticipated 10 years ago. Several major scientific insights, including the effects of eagle disturbances and heat stress on the murres, have come as surprises and have been driven mainly by technology's potential to deliver data with a resolution unattainable using traditional field studies. The dramatic increase in data volumes has partly been paired by automated analysis methods, but some aspects of the new technology, notably individual identification, have been more difficult than anticipated. The investment costs for information technology infrastructure, data storage, and processing capacity have also been substantial. We finish the paper by sketching out new research questions that will guide the next decade at the Auk Lab and repeating an invitation for research collaborations beyond our planned research focus.

References


Adeogun, A. O., Chukwuka, A. V., Fadahunsi, A. A., Okali, K. D., Oluwakotanmi, P. G., Ibor, O. R., Emasoga, P., & Egware, T. U. (2022). Bird feathers as a non-invasive method for ecotoxicological monitoring; a rapid review. Zoologist (The), 20(1), 26-40. https://doi.org/10.4314/tzool.v20i1.5

Ashbrook, K., Wanless, S., Harris, M. P., & Hamer, K. C. (2010). Impacts of poor food availability on positive density dependence in a highly colonial seabird. Proceedings of the Royal Society B, 277(1692), 2355-2360. https://doi.org/10.1098/rspb.2010.0352

Ballard, G., Ainley, D. G., Ribic, C. A., & Barton, K. R. (2001). Effect of instrument attachment and other factors on foraging trip duration and nesting success of Adélie Penguins. The Condor, 103(3), 481-490. https://doi.org/10.1650/0010-5422(2001)103[0481:EOIAAO]2.0.CO;2

Ballard, G., Dugger, K. M., Nur, N., & Ainley, D. G. (2010). Foraging strategies of Adélie Penguins: Adjusting body condition to cope with environmental variability. Marine Ecology Progress Series, 405, 287-302. https://doi.org/10.3354/meps08514

Barbraud, C., & Weimerskirch, H. (2006). Antarctic birds breed later in response to climate change. Proceedings of the National Academy of Sciences, 103(16), 6248-6251. https://doi.org/10.1073/pnas.0510397103

Becker, P. H., Voigt, C. C., Arnold, J. M., & Nagel, R. (2006). A non-invasive technique to bleed incubating birds without trapping: A blood-sucking bug in a hollow egg. Journal of Ornithology, 147(1), 115-118. https://doi.org/10.1007/s10336-005-0027-3

Becker, P. H., & Wendeln, H. (1997). A new application for transponders in population ecology of the Common Tern. The Condor, 99(2), 534-538. http://www.jstor.org/stable/1369963

Berglund, P.-A. (2016). Evaluating ten years of ecological seabird research in the Baltic Sea. [Master's thesis, Stockholm University].

Birkhead, T. R. (1978). Behavioural adaptations to high density nesting in the Common Guillemot Uria aalge. Animal Behaviour, 26(2), 321-331. https://doi.org/10.1016/0003-3472(78)90050-7

Birkhead, T. R. (2023). Fifty years of Common Guillemot studies on Skomer Island. British Birds, 116(6), 319-334. https://doi.org/10.1016/0003-3472(78)90050-7

Bodey, T. W., Cleasby, I. R., Bell, F., Parr, N., Schultz, A., Votier, S. C., & Bearhop, S. (2018). A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods in Ecology and Evolution, 9(4), 946-955. https://doi.org/10.1111/2041-210X.12934

Browning, E., Bolton, M., Owen, E., Shoji, A., Guilford, T., & Freeman, R. (2018). Predicting animal behaviour using deep learning: GPS data alone accurately predict diving in seabirds. Methods in Ecology and Evolution, 9(3), 681-692. https://doi.org/10.1111/2041-210X.12926

Carey, M. J. (2009). The effects of investigator disturbance on procellariiform seabirds: A review. New Zealand Journal of Zoology, 36(3), 367-377. https://doi.org/10.1080/03014220909510161

Carlsen, A. A., Casini, M., Masnadi, F., Olsson, O., Hejdström, A., & Hentati-Sundberg, J. (2024). Autonomous data sampling for high-resolution spatiotemporal fish biomass estimates. Ecological Informatics 84(December 2024): Article 102852. https://doi.org/10.1016/j.ecoinf.2024.102852

Carney, K. M., & Sydeman, W. J. (1999). A review of human disturbance effects on nesting colonial waterbirds. Waterbirds, 22(1), 68-79. http://www.jstor.org/stable/1521995

Corcoran, E., Winsen, M., Sudholz, A., & Hamilton, G. (2021). Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods in Ecology and Evolution, 12(6), 1103-1114. https://doi.org/10.1111/2041-210X.13581

Couzin, I. D., & Heins, C. (2023). Emerging technologies for behavioral research in changing environments. Trends in Ecology and Evolution, 38(4), 346-354. https://doi.org/10.1016/j.tree.2022.11.008

Croxall, J. P. (Ed.). (1987). Seabirds: Feeding ecology and role in marine ecosystems. Cambridge University Press.

Cury, P. M., Boyd, I. L., Bonhommeau, S., Anker-Nilssen, T., Crawford, R. J. M., Furness, R. W., Mills, J. A., Murphy, E. J., Österblom, H., Paleczny, M., Piatt, J. F., Roux, J.-P., Shannon, L., & Sydeman, W. J. (2011). Global seabird response to forage fish depletion−One-third for the birds. Science, 334(6063), 1703-1706. https://doi.org/10.1126/science.1212928

De Robertis, A., Lawrence-Slavas, N., Jenkins, R., Wangen, I., Mordy, C. W., Meinig, C., Levine, M., Peacock, D., & Tabisola, H. (2019). Long-term measurements of fish backscatter from Saildrone unmanned surface vehicles and comparison with observations from a noise-reduced research vessel. ICES Journal of Marine Science, 76(7), 2459-2470. https://doi.org/10.1093/icesjms/fsz124

Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M. A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C. K., Pijanowski, B. C., Randerson, J. T., Read, E. K., Tredennick, A. T., Vargas, R., Weathers, K. C., & White, E. P. (2018). Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences, 115(7), 1424-1432. https://doi.org/10.1073/pnas.1710231115

Edney, A. J., & Wood, M. J. (2021). Applications of digital imaging and analysis in seabird monitoring and research. Ibis, 163(2), 317-337. https://doi.org/10.1111/ibi.12871

Edwards, E. W. J., Quinn, L. R., Wakefield, E. D., Miller, P. I., & Thompson, P. M. (2013). Tracking a Northern Fulmar from a Scottish nesting site to the Charlie-Gibbs Fracture Zone: Evidence of linkage between coastal breeding seabirds and Mid-Atlantic Ridge feeding sites. Deep-Sea Research Part II, 98B, 438-444. https://doi.org/10.1016/j.dsr2.2013.04.011

Evans, T. J., Kadin, M., Olsson, O., & Åkesson, S. (2013). Foraging behaviour of Common Murres in the Baltic Sea, recorded by simultaneous attachment of GPS and time-depth recorder devices. Marine Ecology Progress Series, 475, 277-289. https://doi.org/10.3354/meps10125

Evans, J. C., Torney, C. J., Votier, S. C., & Dall, S. R. X. (2019). Social information use and collective foraging in a pursuit diving seabird. PLoS ONE, 14(9), Article e0222600. https://doi.org/10.1371/journal.pone.0222600

Evans, T. J., Young, R. C., Watson, H., Olsson, O., & Åkesson, S. (2020). Effects of back-mounted biologgers on condition, diving and flight performance in a breeding seabird. Journal of Avian Biology, 51(11), Article e02509. https://doi.org/10.1111/jav.02509

Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., Sachser, N., Lindenberger, U., & Kempermann, G. (2013). Emergence of individuality in genetically identical mice. Science, 340(6133), 756-759. https://doi.org/10.1126/science.1235294

Gaston, A. J., Elliott, K. H., Ropert-Coudert, Y., Kato, A., Macdonald, C. A., Mallory, M. L., & Gilchrist, H. G. (2013). Modeling foraging range for breeding colonies of Thick-billed Murres Uria lomvia in the Eastern Canadian Arctic and potential overlap with industrial development. Biological Conservation, 168, 134-143. https://doi.org/10.1016/j.biocon.2013.09.018

Gill, V. A., & Hatch, S. A. (2002). Components of productivity in Black-legged Kittiwakes Rissa tridactyla: Response to supplemental feeding. Journal of Avian Biology, 33(2), 113-126. https://doi.org/10.1034/j.1600-048X.2002.330201.x

Grémillet, D., Ponchon, A., Paleczny, M., Palomares, M.-L. D., Karpouzi, V. S., & Pauly, D. (2018). Persisting worldwide seabird-fishery competition despite seabird community decline. Current Biology, 28(24), 4009-4013. https://doi.org/10.1016/j.cub.2018.10.051

Hägerlind, J., Hentati-Sundberg, J., & Wandt, B. (2024). Temporally-consistent 3D reconstruction of birds. arXiv, 2408.13629. https://doi.org/10.48550/arXiv.2408.13629

Hanes, M., & Kad, S. (2022). Real-time tracking and pose estimation of guillemots [MSc thesis, Chalmers University of Technology]. Chalmers ODR Student Theses.

Harris, M. P., Albon, S. D., & Wanless, S. 2016. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311-318. https://doi.org/10.1080/00063657.2016.1202889

Hentati-Sundberg, J., Berglund, P.-A., Hejdström, A., & Olsson, O. (2021a). COVID-19 lockdown reveals tourists as seabird guardians. Biological Conservation, 254(February 2021), 108950. https://doi.org/10.1016/j.biocon.2021.108950

Hentati-Sundberg, J., Evans, T., Österblom, H., Hjelm, J., Larson, N., Bakken, V., Svenson, A., & Olsson, O. (2018). Fish and seabird spatial distribution and abundance around the largest seabird colony in the Baltic Sea. Marine Ornithology, 46(1), 61-68. http://doi.org/10.5038/2074-1235.46.1.1250

Hentati-Sundberg, J., Melchiori, S., Berglund, P.-A., & Olsson, O. (2023a). Eagle effects on seabird productivity: Effects of a natural experiment. Biological Conservation, 284(August 2023), 110145. https://doi.org/10.1016/j.biocon.2023.110145

Hentati-Sundberg, J., Olin, A. B., Evans, T. J., Isaksson, N., Berglund, P.-A., & Olsson, O. (2021b). A mechanistic framework to inform the spatial management of conflicting fisheries and top predators. Journal of Applied Ecology, 58(1), 125-134. https://doi.org/10.1111/1365-2664.13759

Hentati-Sundberg, J., Olin, A. B., Reddy, S., Berglund, P.-A., Svensson, E., Reddy, M., Kasarareni, S., Carlsen, A. A., & Hanes, M., Kad, S., & Olsson, O. (2023b). Seabird surveillance: Combining CCTV and artificial intelligence for monitoring and research. Remote Sensing in Ecology and Conservation, 9(4), 568-581. https://doi.org/10.1002/rse2.329

Hentati-Sundberg, J., & Olsson, O. (2016). Amateur photographs reveal population history of a colonial seabird. Current Biology, 26(6), 226-228. https://doi.org/10.1016/j.cub.2016.02.007

Hentati-Sundberg, J., Österblom, H., Kadin, M., Jansson, Å., & Olsson, O. (2012). The Karlsö Murre lab methodology can stimulate innovative seabird research. Marine Ornithology, 40(1), 11-16. http://doi.org/10.5038/2074-1235.40.1.955

Hipfner, J. M., Blight, L. K., Lowe, R. W., Wilhelm, S. I., Robertson, G. J., Barrett, R. T., Anker-Nilssen, T., & Good, T. P. (2012). Unintended consequences: How the recovery of sea eagle Haliaeetus spp. populations in the northern hemisphere is affecting seabirds. Marine Ornithology, 40(1), 39-52. http://doi.org/10.5038/2074-1235.40.1.959

Holt, K. A., & Boersma, P. D. (2022). Unprecedented heat mortality of Magellanic Penguins. Ornithological Applications, 124(1), Article duab052. https://doi.org/10.1093/ornithapp/duab052

Jenouvrier, S., Barbraud, C., & Weimerskirch, H. (2005). Long-term contrasted responses to climate of two Antarctic seabird species. Ecology, 86(11), 2889-2903. https://doi.org/10.1890/05-0514

Jouventin, P., & Weimerskirch, H. (1990). Satellite tracking of Wandering Albatrosses. Nature, 343(6260), 746-748. https://doi.org/10.1038/343746a0

Kadin, M., Österblom, H., Hentati-Sundberg, J., & Olsson, O. (2012). Contrasting effects of food quality and quantity on a marine top predator. Marine Ecology Progress Series, 444, 239-249. https://doi.org/10.3354/meps09417

Kempermann, G., Lopes, J. B., Zocher, S., Schilling, S., Ehret, F., Garthe, A., Karasinsky, A., Brandmaier, A. M., Lindenberger, U., Winter, Y., & Overall, R. W. (2022). The individuality paradigm: Automated longitudinal activity tracking of large cohorts of genetically identical mice in an enriched environment. Neurobiology of Disease, 175(December 2022), Article 105916. https://doi.org/10.1016/j.nbd.2022.105916

Korpela, J., Suzuki, H., Matsumoto, S., Mizutani, Y., Samejima, M., Maekawa, T., Nakai, J., & Yoda, K. (2020). Machine learning enables improved runtime and precision for bio-loggers on seabirds. Communications Biology, 3, Article 633 . https://doi.org/10.1038/s42003-020-01356-8

Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouvé, C., Besson, D., Chastel, O., & Weimerskirch, H. (2010). Patterns of aging in the long-lived Wandering Albatross. Proceedings of the National Academy of Sciences, 107(14), 6370-6375. https://doi.org/10.1073/pnas.0911181107

Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., & Kim, T.-K. (2021). Multiple object tracking: A literature review. Artificial Intelligence, 293(April 2021), Article 103448. https://doi.org/10.1016/j.artint.2020.103448

Michael, P. E., Thomson, R., Barbraud, C., Delord, K., De Grissac, S., Hobday, A. J., Strutton, P. G., Tuck, G. N., Weimerskirch, H., & Wilcox, C. (2017). Illegal fishing bycatch overshadows climate as a driver of albatross population decline. Marine Ecology Progress Series, 579, 185-199. https://doi.org/10.3354/meps12248

Olin, A. B., Dück, L., Berglund, P.-A., Karlsson, E., Bohm, M., Olsson, O., & Hentati-Sundberg, J. (2024). Breeding failures and reduced nest attendance in response to heat stress in a high-latitude seabird. Marine Ecology Progress Series, 737, 147-160. https://doi.org/10.3354/meps14244

Oliver, R. Y., Iannarilli, F., Ahumada, J., Fegraus, E., Flores, N., Kays, R., Birch, T., Ranipeta, A., Rogan, M. S., Sica, Y. V., & Jetz, W. (2023). Camera trapping expands the view into global biodiversity and its change. Philosophical Transactions of the Royal Society B, 378(1881), Article 20220232. https://doi.org/10.1098/rstb.2022.0232

Olsson, O., & Hentati-Sundberg, J. (2017). Population trends and status of four seabird species (Uria aalge, Alca torda, Larus fuscus, Larus argentatus) at Stora Karlsö in the Baltic Sea. Ornis Svecica, 27(2-4), 64-93. https://doi.org/10.34080/os.v27.19558

Österblom, H., Casini, M., Olsson, O., & Bignert, A. (2006). Fish, seabirds and trophic cascades in the Baltic Sea. Marine Ecology Progress Series, 323, 233-238. https://doi.org/10.3354/meps323233

Österblom, H., Olsson, O., Blenckner, T., & Furness, R. W. (2008). Junk-food in marine ecosystems. Oikos, 117(7), 967-977. https://doi.org/10.1111/j.0030-1299.2008.16501.x

Oswald, S. A., & Arnold, J. M. (2012). Direct impacts of climatic warming on heat stress in endothermic species: Seabirds as bioindicators of changing thermoregulatory constraints. Integrative Zoology, 7(2), 121-136. https://doi.org/10.1111/j.1749-4877.2012.00287.x

Patterson, A., Gilchrist, H. G., Benjaminsen, S., Bolton, M., Bonnet-Lebrun, A. S., Davoren, G. K., Descamps, S., Erikstad, K. E., Frederiksen, M., Gaston, A. J., Gulka, J., Hentati-Sundberg, J., Huffeldt, N. P., Johansen, K. L., Labansen, A. L., Linnebjerg, J. F., Love, O. P., Mallory, M. L., Merkel, F. R., … Elliott, K. H. (2022). Foraging range scales with colony size in high-latitude seabirds. Current Biology, 32(17), 3800-3807. https://doi.org/10.1016/j.cub.2022.06.084

Quintana, F., Uhart, M. M., Gallo, L., Mattera, M. B., Rimondi, A., & Gómez-Laich, A. (2022). Heat-related massive chick mortality in an Imperial Cormorant Leucocarbo atriceps colony from Patagonia, Argentina. Polar Biology, 45(2), 275-284. https://doi.org/10.1007/s00300-021-02982-6

Rebke, M., Coulson, T., Becker, P. H., & Vaupel, J. W. (2010). Reproductive improvement and senescence in a long-lived bird. Proceedings of the National Academy of Sciences, 107(17), 7841-7846. https://doi.org/10.1073/pnas.1002645107

Reed, T. E., Kruuk, L. E. B., Wanless, S., Frederiksen, M., Cunningham, E. J. A., & Harris, M. P. (2008). Reproductive senescence in a long-lived seabird: Rates of decline in late-life performance are associated with varying costs of early reproduction. American Naturalist, 171(2), 89-101. https://doi.org/10.1086/524957

Romero, L. M., & Fairhurst, G. D. (2016). Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future. Comparative Biochemistry and Physiology A , 202, 112-122. https://doi.org/10.1016/j.cbpa.2016.05.002

Salzman, A. G. (1982). The selective importance of heat stress in gull nest location. Ecology, 63(3), 742-751. https://doi.org/10.2307/1936795

Saraux, C., & Chiaradia, A. (2022). Age-related breeding success in Little Penguins: A result of selection and ontogenetic changes in foraging and phenology. Ecological Monographs, 92(1), Article e01495. https://doi.org/10.1002/ecm.1495

Sarzo, B., Armero, C., Conesa, D., Hentati-Sundberg, J., & Olsson, O. (2019). Bayesian immature survival analysis of the largest colony of Common Murre (Uria aalge) in the Baltic Sea. Waterbirds, 42(3), 304-313. https://doi.org/10.1675/063.042.0306

Sarzo, B., King, R., Conesa, D., & Hentati-Sundberg, J. (2021). Correcting bias in survival probabilities for partially monitored populations via integrated models. Journal of Agricultural, Biological and Environmental Statistics, 26, 200-219. https://doi.org/10.1007/s13253-020-00423-1

Schilling, A.-K., Mazzamuto, M. V., & Romeo, C. (2022). A Review of non-invasive sampling in wildlife disease and health research: What's new? Animals, 12(13), Article 1719. https://doi.org/10.3390/ani12131719

Sealy, S. G. (Ed.). (1990). Auks at sea. Cooper Ornithological Society.

Sequeira, A. M. M., Heupel, M. R., Lea, M.-A., Eguíluz, V. M., Duarte, C. M., Meekan, M. G., Thums, M., Calich, H. J., Carmichael, R. H., Costa, D. P., Ferreira, L. C., Fernandéz-Gracia, J., Harcourt, R., Harrison, A.-L., Jonsen, I., McMahon, C. R., Sims, D. W., Wilson, R. P., & Hays, G. C. (2019). The importance of sample size in marine megafauna tagging studies. Ecological Applications, 29(6), Article e01947. https://doi.org/10.1002/eap.1947

Steiner, U. K., & Gaston, A. J. (2005). Reproductive consequences of natal dispersal in a highly philopatric seabird. Behavioral Ecology, 16(3), 634-639. https://doi.org/10.1093/beheco/ari035

Strøm, H., Descamps, S., Ekker, M., Fauchald, P., & Moe, B. (2021). Tracking the movements of North Atlantic seabirds: Steps towards a better understanding of population dynamics and marine ecosystem conservation. Marine Ecology Progress Series, 676, 97-116. https://doi.org/10.3354/meps13801

Swart, S., Zietsman, J. J., Coetzee, J. C., Goslett, D. G., Hoek, A., Needham, D., & Monteiro, P. M. S. (2016). Ocean robotics in support of fisheries research and management. African Journal of Marine Science, 38(4), 525-538. https://doi.org/10.2989/1814232X.2016.1251971

Thiebault, A., Mullers, R. H. E., Pistorius, P. A. & Tremblay, Y. (2014). Local enhancement in a seabird: Reaction distances and foraging consequence of predator aggregations. Behavioral Ecology 25(6), 1302-1310. https://doi.org/10.1093/beheco/aru132

Thompson, P. M., & Ollason, J. C. (2001). Lagged effects of ocean climate change on fulmar population dynamics. Nature, 413(6854), 417-420. https://doi.org/10.1038/35096558

Tremblay, Y., Cherel, Y., Oremus, M., Tveraa, T., & Chastel, O. (2003). Unconventional ventral attachment of time-depth recorders as a new method for investigating time budget and diving behaviour of seabirds. Journal of Experimental Biology, 206(11), 1929-1940. https://doi.org/10.1242/jeb.00363

Turns, A. (2023, April 28). Nest western: UK's vulnerable kittiwakes flock to bird hotels. The Guardian. https://www.theguardian.com/environment/2023/apr/28/nest-western-uk-vulnerable-kittiwakes-flock-to-bird-hotels-aoe

Votier, S. C., Birkhead, T. R., Oro, D., Trinder, M., Grantham, M. J., Clark, J. A., McCleery, R. H., & Hatchwell, B. J. (2008). Recruitment and survival of immature seabirds in relation to oil spills and climate variability. Journal of Animal Ecology, 77(5), 974-983. https://doi.org/10.1111/j.1365-2656.2008.01421.x

Wakefield, E. D., Bodey, T. W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., Dwyer, R. G., Green, J. A., Grémillet, D., Jackson, A. L., Jessopp, M. J., Kane, A., Langston, R. H. W., Lescroël, A., Murray, S., Le Nuz, M., Patrick, S. C., Péron, C., Soanes, L. M., … Hamer, K. C. (2013). Space partitioning without territoriality in gannets. Science, 341(6141), 68-70. https://doi.org/10.1126/science.1236077

Walter, T., & Couzin, I. D. (2021). TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual elds. eLife, 10, Article e64000. https://doi.org/10.7554/eLife.64000

Warzybok, P., Santora, J. A., Ainley, D. G., Bradley, R. W., Field, J. C., Capitolo, P. J., Carle, R. D., Elliott, M., Beck, J. N., McChesney, G. J., Hester, M. M., & Jahncke, J. (2018). Prey switching and consumption by seabirds in the central California Current upwelling ecosystem: Implications for forage fish management. Journal of Marine Systems, 185(September 2018), 25-39. https://doi.org/10.1016/j.jmarsys.2018.04.009

Weinstein, B. G. (2018). A computer vision for animal ecology. Journal of Animal Ecology, 87(3), 533-545. https://doi.org/10.1111/1365-2656.12780

Weinstein, B. G., Garner, L., Saccomanno, V. R., Steinkraus, A., Ortega, A., Brush, K., Yenni, G., McKellar, A. E., Converse, R., Lippitt, C. D., Wegmann, A., Holmes, N. D., Edney, A. J., Hart, T., Jessopp, M. J., Clarke, R. H., Marchowski, D., Senyondo, H., Dotson, R., … Ernest, S. K. M. (2022). A general deep learning model for bird detection in high resolution airborne imagery. Ecological Applications, 32(8), Article e2694. https://doi.org/10.1002/eap.2694

Wilson, R. P., Börger, L., Holton, M. D., Scantlebury, D. M., Gómez-Laich, A., Quintana, F., Rosell, F., Graf, P. M., Williams, H., Gunner, R., Hopkins, L., Marks, N., Geraldi, N. R., Duarte, C. M., Scott, R., Strano, M. S., Robotka, H., Eizaguirre, C., Fahlman, A., & Shepard, E. L. C. (2020). Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. Journal of Animal Ecology, 89(1), 161-172. https://doi.org/10.1111/1365-2656.13040

Žydelis, R., Bellebaum, J., Österblom, H., Vetemaa, M., Schirmeister, B., Stipniece, A., Dagys, M., van Eerden, M., & Garthe, S. (2009). Bycatch in gillnet fisheries - An overlooked threat to waterbird populations. Biological Conservation, 142(7), 1269-1281. https://doi.org/10.1016/j.biocon.2009.02.025

Search by author or title:

Browse previous volumes: