Menu

Volume 53, No. 1

Search by author or title:

Breeding season movements of Aleutian Terns Onychoprion aleuticus: Implications for population assessment and monitoring.


Authors

KELLY NESVACIL1*, GREY W. PENDLETON1, JOHN P. SKINNER1, SUSAN OEHLERS2, JEFF MONDRAGON1, & DONALD E. LYONS3,4
1Division of Wildlife Conservation, Alaska Department of Fish and Game, 1255 West 8th Street, Juneau, Alaska, 99802, USA *(nesvacil.kelly@gmail.com)
2USDA Forest Service, Yakutat Ranger District, Tongass National Forest, 421 Ocean Cape Road, Yakutat, Alaska, 99689, USA
3National Audubon Society Seabird Institute, 12 Audubon Road, Bremen, Maine, 04551, USA
4Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, USA

Citation

Nesvacil, K., Pendleton, G. W., Skinner, J. P., Oehlers, S., Mondragon, J., & Lyons, D. E. 2025. Breeding season movements of Aleutian Terns Onychoprion aleuticus: Implications for population assessment and monitoring.. Marine Ornithology 53: 45 - 57
http://doi.org/10.5038/2074-1235.53.1.1618

Received 26 January 2024, accepted 26 July 2024

Date Published: 2025/04/15
Date Online: 2025/02/02
Key words: Alaska, Aleutian Tern, breeding season dispersal, colony dynamics, home range, population assessment, satellite telemetry

Abstract

In 2017 and 2018, satellite transmitters were deployed (n2017 = 13, n2018 = 14) on Aleutian Terns Onychoprion aleuticus in two areas of Alaska, USA, to investigate breeding season movements and temporal patterns of colony activity. The effort was intended to aid in the development of a large-scale population-assessment framework. Across the two years, we observed dispersal to seven confirmed or potential (putative) colonies, none of which were previously documented, ranging in distance from 0.4 to 64.2 km from tag deployment sites. Although most terns did not associate with any known colonies during the breeding season, several individuals from the study area in western Alaska were sequentially associated with multiple colonies. Breeding season movements were usually within tens of kilometers of the capture location, but movements of several hundred kilometers were recorded occasionally. These results should be interpreted cautiously because we do not know the post-tagging nesting status of marked terns, nor were we able to determine whether there were tern behavioral changes related to capture and tagging. With this caution in mind and based on our findings, we recommend that future efforts to estimate total Aleutian Tern population sizes or trends consider the following: (1) estimates should not rely solely upon surveys of previously documented colonies; (2) estimation procedures should account for the potential movement of individual terns among colonies, the possible lack of association of a tern with any colony, the possible association of a tern with multiple colonies, and/or the possibility that adults do not attempt to breed each year; and (3) if necessary, studies should survey subsets of the Alaska breeding range in successive years to reduce the uncertainty around the size of the statewide tern population.

References


Alaska Center for Conservation Science (2020, May 25). Wildlife data portal. https://biotics.aknhp.axds.co/

Anderson, D. J. (1982). The home range: A new nonparametric estimation technique. Ecology, 63(1), 103-112. https://doi.org/10.2307/1937036

Andres, B. A., & Browne, B. T. (2004). The birds of Yakutat, Alaska. General Technical Report R10-TP-131. U.S. Forest Service, Alaska Region.

Arimitsu, M. L., Piat, J. F., Hatch, S., Suryan, R. M., Batten S., Bishop, M. A., Campbell, R. W., Coletti H., Cushing, D., Gorman, K., Hopcroft, R. R., Kuletz, K. J., Marsteller, C., McKinstry, C., McGowan, D., Moran, J., Pegau, S., Schaefer, A., Schoen, S., … Von Biela, V. R. (2021). Heatwave‐induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Global Change Biology, 27(9), 1859-1878. https://doi.org/10.1111/gcb.15556

Barker, R. J., & Sauer, J. R. (1992). Modelling population change from time series data. In D. R. Mccullough & R. H. Barrett (Eds.), Wildlife 2001: Populations (pp. 182-194). Elsevier Applied Science. https://doi.org/10.1007/978-94-011-2868-1_17

Bibby, C. J., Burgess, N. D., Hill, D. A., & Mustoe, S. H. (2000). Bird Census Techniques (2nd ed.). Academic Press.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and inference: A practical information-theoretic approach (2nd ed.). Springer New York. https://doi.org/10.1007/b97636

Calenge, C. (2006). The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197(3-4), 516-519. https://doi.org/10.1016/j.ecolmodel.2006.03.017

Collecte Localisation Satellite. (2016). Argos user's manual. https://www.argos-system.org/wp-content/uploads/2023/01/CLS-Argos-System-User-Manual.pdf

Corcoran, R. M. (2012). Aleutian Tern counts from seabird colony and nearshore marine bird surveys in the Kodiak Archipelago, Alaska 1975-2012 [Unpublished report 01-12]. U.S. Department of the Interior, Fish and Wildlife Service, Kodiak National Wildlife Refuge.

Duffy-Anderson, J. T., Stabeno, P., Andrews, A. G., III, Cieciel, K., Deary, A., Farley, E., Fugate, C., Harpold, C., Heintz, R., Kimmel, D., Kuletz, K., Lamb, J., Paquin, M., Porter, S., Rogers, L., Spear, A., Yasumiishi, E. (2019). Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophysical Research 46(16), 9833-9842. https://doi.org/10.1029/2019GL083396

Fair, J., Paul, E., & Jones, J. (Eds.). (2010). Guidelines to the use of wild birds in research (3rd ed.). Ornithological Council.

Furness, R. W., & Birkhead, T. R. (1984). Seabird colony distributions suggest competition for food supplies during the breeding season. Nature, 311, 655-656. https://doi.org/10.1038/311655a0

Goldstein, M. I., Duffy, D. C., Oehlers, S., Catterson, N., Frederick, J., & Pyare, S. (2019). Interseasonal movements and non-breeding locations of Aleutian Terns Onychoprion aleuticus. Marine Ornithology, 47(1), 67-76. http://doi.org/10.5038/2074-1235.47.1.1294

Hamer, K. C., Schreiber, E. A., & Burger, J. (2001). Breeding biology, life histories, and life history-environment interactions in seabirds. In E. A. Schreiber & J. Burger (Eds.), Biology of Marine Birds (pp. 217-261). CRC Press.

Harrison, P., Perrow, M., & Larsson, H. (2021). Seabirds: The new identification guide. Lynx Edicions.

Hastings, K. K., Gelatt, T. S., Maniscalco, J. M., Jemison, L. A., Towell, R., Pendleton, G. W., & Johnson, D. S. (2023). Reduced survival of Steller sea lions in the Gulf of Alaska following marine heatwave. Frontiers of Marine Science, 10, Article 1127013. https://doi.org/10.3389/fmars.2023.1127013

Heath, S. R., Dunn, E. H., & Agro, D. J. (2009). Black Tern (Chlidonias niger), version 2.0. In A. F. Poole (Ed.), The Birds of North America. Cornell Lab of Ornithology. https://doi.org/10.2173/bna.147

Hillary, R. G, Bravington, M. V., Patterson, T. A., Grewe, P., Bradford, R., Feutry, P., Gunasekera, R., Peddemors, V., Werry, J., Francis, M. P., Duffy, C. A. J., & Bruce B. D. (2018). Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand. Scientific Reports, 8, Article 2661. https://doi.org/10.1038/s41598-018-20593-w

Huang, R. M., Bass, O. L., Jr., & Pimm, S. L. 2017. Sooty tern (Onychoprion fuscatus) survival, oil spills, shrimp fisheries, and hurricanes. PeerJ, 5, Article e3287. https://doi.org/10.7717/peerj.3287

Jones, T., Divine, L. M., Renner, H., Knowles, S., Lefebvre, K. A., Burgess, H. K., Wright, C., & Parrish, J. K. (2019). Unusual mortality of Tufted Puffins (Fratercula cirrhata) in the eastern Bering Sea. PLoS ONE, 14(5), Article e0216532. https://doi.org/10.1371/journal.pone.0216532

Jones, T., Parrish, J. K., Lindsey, J., Wright, C., Burgess, H. K., Dolliver, J., Divine, L., Kaler, R., Bradley, D., Sorenson, G., Torrenta, R., Backensto, S., Coletti, H. A., Harvey, J. T., Nevins, H. M., Donnelly-Greenan, E., Sherer, D. L., Roletto, J., & Lindquist, K. (2024). Marine bird mass mortality events as an indicator of the impacts of ocean warming. Marine Ecology Progress Series, 737: 161-181. https://doi.org/10.3354/meps14330

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models (2nd ed.). SAS Institute Inc.

Massey, B. W., Keane, K., & Boardman, C. (1988). Adverse effects of radio transmitters on the behavior of nesting Least Terns. The Condor, 90(4), 945-947. https://doi.org/10.2307/1368856

McDonald, T., Kaler, R., Oehlers, S., Goldstein, M. I., Boldenow, M., Renner, H., Corcoran, R., Larsen Tempel, J., Lyons, D., Cooper, E., Renner, M., Szczys, P., Catterson, N., Zeller, T., & Pepin., D. (2022a). Aleutian Tern surveys in northeast Bristol Bay, 2021 field season. McDonald Data Sciences report to the Aleutian Tern Technical Committee, U.S. Fish & Wildlife Service.

McDonald, T., Kaler, R., Oehlers, S., Goldstein, M. I., Boldenow, M., Renner, H., Corcoran, R., Larsen Tempel, J., Lyons, D., Renner, M., Szczys, P., Catterson, N., Williams, A., Curl, J., Welfelt, J., & Pepin, D. (2022b). Aleutian Tern surveys in northeast Bristol Bay, 2022 field season. McDonald Data Sciences report to the Aleutian Tern Technical Committee, U.S. Fish & Wildlife Service.

Naves, L.C. (2018). Geographic and seasonal patterns of seabird subsistence harvest in Alaska. Polar Biology, 41(6), 1217-1236. https://doi.org/10.1007/s00300-018-2279-4

Naves, L. C., Mengak, L. F., & Keating, J. M. (2021). Alaska subsistence harvest of birds and eggs, 2019-2020, Alaska Migratory Bird Co-Management Council. Technical Paper No. 479, Alaska Department of Fish and Game Division of Subsistence. https://www.adfg.alaska.gov/static/home/subsistence/pdfs/Naves_et_al_2021_AMBCC_harvest_report_2019-2020_TP479.pdf

Neumann, J. L., Larose, C. S., Brodin, G., & Feare, C. J. (2018). Foraging ranges of incubating Sooty Terns Onychoprion fuscatus on Bird Island, Seychelles, during a transition from food plenty to scarcity, as revealed by GPS loggers. Marine Ornithology, 46(1), 11-18. http://doi.org/10.5038/2074-1235.46.1.1242

Nichols, J. D., Thomas, L., & Conn, P. B. (2009). Inferences about landbird abundance from count data: Recent advances and future directions. In D. L. Thompson, E. G. Cooch, & M. J. Conroy (Eds.), Environmental and Ecological Statistics: Vol. 3. Modeling demographic processes in marked populations (pp. 201-235). Springer. https://doi.org/10.1007/978-0-387-78151-8_9

North, M. R. (2013). Aleutian Tern (Onychoprion aleuticus), version 2.0. In A. F. Poole (Ed.), The Birds of North America. Cornell Lab of Ornithology. https://doi.org/10.2173/bna.291

Oehlers, S. O. (2017). Summary of Yakutat Area 2017 Aleutian Tern monitoring [Unpublished report]. U.S. Department of Agriculture, Forest Service.

Oehlers, S. O. (2018). Summary of Yakutat Area 2018 Aleutian Tern monitoring [Unpublished report]. U.S. Department of Agriculture, Forest Service.

Osborne, O. E., O'Hara, P. D., Whelan, S., Zandbergen, P., Hatch, S. A., & Elliott, K. H. (2020). Breeding seabirds increase foraging range in response to an extreme marine heatwave. Marine Ecology Progress Series, 646, 161-173. https://doi.org/10.3354/meps13392

Piatt, J. F., Parrish, J. K., Renner, H. M., Schoen, S. K., Jones, T. T., Arimitsu, M. L., Kuletz, K. J., Bodenstein, B., García-Reyes, M., Duerr, R. S., Corcoran, R. M., Kaler, R. S. A., McChesney, G. J., Golightly, R. T., Coletti, H. A., Suryan, R. M., Burgess, H. K., Lindsey, J., Lindquist, K., … Sydeman, W. J. (2020). Extreme mortality and reproductive failure of Common Murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLoS ONE, 15(1), Article e0226087. https://doi.org/10.1371/journal.pone.0226087

Pyare, S., Goldstein, M., Duffy, D., Oehlers, S., Catterson, N., & Frederick, J. (2013). Aleutian Tern (Onychoprion aleuticus) research in Alaska: Survey methodology, migration, and statewide coordination [Unpublished report]. State Wildlife Grant Project T-9-1-3. Alaska Department of Fish and Game.

R Development Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Renner, H. M., Romano, M. D., Renner, M., Pyare, S., Goldstein, M. I., & Arthukin, Y. (2015). Assessing the breeding distribution and population trends of the Aleutian Tern Onychoprion aleuticus. Marine Ornithology, 43(2), 179-187. http://doi.org/10.5038/2074-1235.43.2.1129

Romano, M. D., Renner, H. M., Kuletz, K. J., Parrish, J. K., Jones, T., Burgess, H. K., Cushing, D. A., & Causey, D. (2020). Die-offs, reproductive failure, and changing at-sea abundance of murres in the Bering and Chukchi Seas in 2018. Deep-Sea Research Part II, 181-182(December), Article 104877. https://doi.org/10.1016/j.dsr2.2020.104877

Soanes, L. M., Bright, J. A., Brodin, G., Mukhida, F., & Green, J. A. (2015). Tracking a small seabird: First records of foraging behaviour in the Sooty Tern Onychoprion fuscatus. Marine Ornithology, 43(2), 235-239. http://doi.org/10.5038/2074-1235.43.2.1136

Suryan, R. M., Arimitsu, M. L., Coletti, H. A., Hopcroft, R. R., Lindeberg, M. R., Barbeaux, S. J., Batten, S. D., Burt, W. J., Bishop, M. A., Bodkin, J. L., Brenner, R., Campbell, R. W., Cushing, D. A., Danielson, S. L., Dorn, M. W., Drummond, B., Esler, D., Gelatt, T., Hanselman, D. A., … Zador, S. G. (2021). Ecosystem response persists after a prolonged marine heatwave. Scientific Reports, 11, Article 6235. https://doi.org/10.1038/s41598-021-83818-5

Thaxter, C. B., Ross-Smith, V. H., Clark, J. A., (2014). A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ringing & Migration, 29(2), 65-76. https://doi.org/10.1080/03078698.2014.995546

Walker, E. P. (1923). Definite breeding record for the Aleutian Tern in southern Alaska. The Condor, 25(4), 113-117. https://doi.org/10.2307/1362550

Will, A., Takahashi, A., Thiebot, J.-B., Martinez, A., Kitaiskaia, E., Britt, L. , Nichol, D., Murphy, J., Dimond, A., Tsukamoto, S., Nishizawa, B., Niizuma, Y., & Kitaysky, A. (2020). The breeding seabird community reveals that recent sea ice loss in the Pacific Arctic does not benefit piscivores and is detrimental to planktivores. Deep-Sea Research Part II, 181-182(December), Article 104902. https://doi.org/10.1016/j.dsr2.2020.104902

Woehler, E. J., & Hobday, A. J. (2024). Impacts of marine heatwaves may be mediated by seabird life history strategies. Marine Ecology Progress Series, 737, 9-23. https://doi.org/10.3354/meps14333

Worton, B. J. (1995). Using Monte Carlo simulation to evaluate kernel-based home range estimators. The Journal of Wildlife Management, 59(4), 794-800. https://doi.org/10.2307/3801959

Yasumiishi, E. M., Cieciel, K., Andrews, A. G., Murphy, J., & Dimond, J. A. (2020). Climate-related changes in the biomass and distribution of small pelagic fishes in the eastern Bering Sea during late summer, 2002-2018. Deep-Sea Research Part II, 181-182(December), Article 104907. https://doi.org/10.1016/j.dsr2.2020.104907

Search by author or title:

Browse previous volumes: