Menu

Volume 53, No. 1

Search by author or title:

Modeling breeding habitat preferences of Tahiti Petrel Pseudobulweria rostrata on Ta‘ū, American Samoa.


Authors

ANDREW J. TITMUS1,2, & CHRISTOPHER A. LEPCZYK3,4*

1Department of Biology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
2Current address: National Science Foundation, Alexandria, Virginia, USA
3Department of Natural Resources and Environmental Management, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
4Current address: College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA *(lepczyk@auburn.edu)

Citation

Titmus, A. J., & Lepczyk, C. A. 2025. Modeling breeding habitat preferences of Tahiti Petrel Pseudobulweria rostrata on Ta‘ū, American Samoa. . Marine Ornithology 53: 13 - 19
http://doi.org/10.5038/2074-1235.53.1.1617

Received 16 October 2023, accepted 15 July 2024

Date Published: 2025/04/15
Date Online: 2025/02/02
Key words: spatial models, petrels, habitat survey, distribution models, tropical Pacific

Abstract

Understanding the prevalence and use of breeding habitat of seabird species is important for evaluating appropriate conservation and management strategies. Seabirds are one taxonomic group for which we have relatively few species distribution studies, particularly on remote islands. To address this limitation, the goals of this study were to (1) build and use a species distribution model to identify which differences in habitat structure, physical characteristics, and environmental conditions affect Tahiti Petrel Pseudobulweria rostrata nesting presence on the island of Ta‘ū, American Samoa; and (2) evaluate how important nesting habitat characteristics can identify the fine-scale extent and location of suitable Tahiti Petrel breeding habitat throughout the summit region of Ta‘ū. We found that closed canopy cover and higher altitudes best predicted Tahiti Petrel nesting locations. We classified the summit montane rainforest habitat above 650 m by the presence of canopy species using supervised image classification. Of the 774.7 ha (7.474 km2) of habitat classified, 63.8% was covered by canopy species, and a total of 254.1 ha (2.541 km2) of montane habitat was classified as most suitable for Tahiti Petrel nesting. Closed canopy cover was higher on the leeward side of the summit (80.02%) compared to the windward side (46.50%). This difference is likely caused by a combination of prevailing winds and disturbances from storm events, which can significantly alter the amount and distribution of canopy vegetation. This pattern highlights the importance of considering breeding habitat availability when assessing the conservation needs of Tahiti Petrels.

References


Algar, A. C., Kharouba, H. M., Young, E. R., & Kerr, J.T. (2009). Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32(1), 22-33. https://doi.org/10.1111/j.1600-0587.2009.05832.x

Amerson, A. B., Jr., Whistler, W. A., & Schwaner, T. D. (1982). Wildlife and wildlife habitat of American Samoa II: Accounts of flora and fauna. U.S. Fish and Wildlife Service.

Anderson, W. B., & Polis G. A. (1999). Nutrient fluxes from water to land: seabirds affect plant nutrient status on gulf of California islands. Oecologia, 118(3), 324-332. https://doi.org/10.1007/s004420050733

Baillie, J., Hilton-Taylor, C., & Stuart, S. N. (2004). 2004 IUCN Red List of threatened species: A global species assessment. International Union for Conservation of Nature. https://www.iucnredlist.org/resources/baillie2004

Bentley, C. B. (1975). Ground-water resources of American Samoa with emphasis on the Tafuna-Leone plain, Tutuila Island. (Water-Resources Investigations Report No. 29-75). U.S. Geological Survey. https://doi.org/10.3133/wri7529

BirdLife International. (2000). Threatened birds of the world. Lynx Edicions and BirdLife International.

Braun-Blanquet, J. (1932). Plant sociology: The study of plant communities. McGraw-Hill.

Bried, J., & Jouventin, P. (2001). Site and mate choice in seabirds: an evolutionary approach. In E. A. Schreiber & J. Burger (Eds.), Biology of marine birds (pp. 263-295). CRC Press. https://doi.org/10.1201/9781420036305

Carlile, N., Priddel, D., Zino, F., Natividad, C., & Wingate, D. B. (2003). A review of four successful recovery programmes for threatened sub-tropical petrels. Marine Ornithology, 31(2), 185-192. https://doi.org/10.5038/2074-1235.31.2.579

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology, 63(2), 215-244. https://doi.org/10.2307/5542

Cleasby, I.R., Owen, E., Wilson, L., Wakefield, E. D., O'Connell, P., & Bolton, M. (2020). Identifying important at-sea areas for seabirds using species distribution models and hotspot mapping. Biological Conservation, 241, 108375. https://doi.org/10.1016/j.biocon.2019.108375

Cole, T. G., Whitesell, C. D., Whistler, W. A., McKay, N., & Ambacher, A. H. (1988). Vegetation survey and forest inventory: American Samoa. (Pacific Southwest Forest and Range Experiment Station Resource Bulletin, PSW-25). Pacific Southwest Forest and Range Experiment Station, USA.

Copeland, J. P., Peek, J. M., Groves, C. R., Melquist, W. E., McKelvey, K. S., McDaniel, G. W., Long, C. D., & Harris, C. E. (2007). Seasonal habitat associations of the wolverine in central Idaho. Journal of Wildlife Management, 71(7), 2201-2212. https://doi.org/10.2193/2006-559

Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M., & Byrd, G. V. (2005). Introduced predators transform subarctic islands from grassland to tundra. Science, 307(5717), 1959-1961. https://doi.org/10.1126/science.1108485

Croxall, J. P., Butchart, S. H. M., Lascelles, B., Stattersfield, A. J., Sullivan, B., Symes, A., & Taylor, P. (2012). Seabird conservation status, threats and priority actions: A global assessment. Bird Conservation International, 22(1), 1-34. https://doi.org/10.1017/S0959270912000020

Dolman, P. M., & Sutherland, W. J. (1995). The response of bird populations to habitat loss. Ibis, 137(s1), 38-46. https://doi.org/10.1111/j.1474-919X.1995.tb08456.x

Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hallowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., & Talley, L. D. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11-37. https://doi.org/10.1146/annurev-marine-041911-111611

Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. https://doi.org/10.1038/nature03906

Ford, W. M., Menzel, M. A., Rodrigue, J. L., Menzel, J. M., & Johnson, J. B. (2005). Relating bat species presence to simple habitat measures in a central Appalachian forest. Biological Conservation, 126(4), 528-539. https://doi.org/10.1016/j.biocon.2005.07.003

Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1-2), 73-106. https://doi.org/10.1016/S0012-8252(01)00056-3

Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions 16(3), 321-330. https://doi.org/10.1111/j.1472-4642.2010.00641.x

Fukami, T., Wardle, D. A., Bellingham, P. J., Mulder, C. P. H., Towns, D. R., Yeates, G. W., Bonner, K. I., Durret, M. S., Grant-Hoffman, M. N., & Williamson, W. M. (2006). Above‐and below‐ground impacts of introduced predators in seabird‐dominated island ecosystems. Ecology Letters 9(12), 1299-1307. https://doi.org/10.1111/j.1461-0248.2006.00983.x

Goni, G., DeMaria, M., Knaff, J. A., Sampson, C., Ginis, I., Bringas, F., Mavume, A., Lauer, C., Lin, I.-I., Ali, M. M., Sandery, P., Ramos-Buarque, S., Kang, K., Mehra, A., Chassignet, E., & Halliwell, G. (2009). Applications of satellite-derived ocean measurements to tropical cyclone forecasting. Oceanography, 22(3), 190-197. https://doi.org/10.5670/oceanog.2009.78

Grémillet, D., & Boulinier, T. (2009). Spatial ecology and conservation of seabirds facing global climate change: A review. Marine Ecology Progress Series, 391, 121-137. http://www.jstor.org/stable/24873660

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3), 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8650-8655. https://doi.org/10.1073/pnas.0912668107

Hung, C. C., & Gong, G. C. (2011). Biogeochemical responses in southern East China Sea after typhoons. Oceanography, 24(4), 42-51. https://doi.org/10.5670/oceanog.2011.93

Hutchinson, G. E. 1950. Survey of contemporary knowledge of biogeochemistry 3. The biogeochemistry of vertebrate excretion. Bulletin of the American Museum of Natural History, 96, 1-554.

Izuka, S. K. 2005. Reconnaissance of the hydrology of Ta‘ū, American Samoa. (Scientific Investigations Report 2004-5240). U.S. Geological Survey.

Kirui, K. B., Kairo, J. G., Bosire, J., Viergever, K. M., Rudra, A., Huxham, M., & Briers, R. A. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean & Coastal Management, 83, 19-24. https://doi.org/10.1016/j.ocecoaman.2011.12.004

Lauer, M., & Aswani, S. (2008). Integrating indigenous ecological knowledge and multi-spectral image classification for marine habitat mapping in Oceania. Ocean & Coastal Management, 51(6), 495-504. https://doi.org/10.1016/j.ocecoaman.2008.04.006

Loope, L. L., & Giambelluca, T. W. (1998). Vulnerability of island tropical montane cloud forest to climate change, with special reference to east Maui, Hawaii. Climate Change, 39, 503-517. https://doi.org/10.1023/A:1005372118420

Markwell, T. J., & Daugherty, C. H. (2002). Invertebrate and lizard abundance is greater on seabird-inhabited islands than on seabird-free islands in the Marlborough Sounds, New Zealand. Ecoscience, 9(3), 293-299. https://www.jstor.org/stable/42901404

Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490-509. https://doi.org/10.1111/j.1749-8198.2010.00351.x

O'Connor, P. J., & Rauzon, M. J. (2004). Inventory and monitoring of seabirds in National Park of American Samoa. (Technical Report 136). Pacific Cooperative Studies Unit, University of Hawaii at Manoa.

Polis, G. A., & Hurd, S. D. (1996). Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. The American Naturalist, 147(3), 396-423. https://www.jstor.org/stable/2463215

Pyle, P., Spear, L., & Engbring, J. (1990). A previously unreported population of Herald Petrel on Ta‘ū Island, American Samoa. Colonial Waterbirds, 13(2), 136-138.

Rayner, M . J., Clout, M. N., Stamp, R. K., Imber, M. J., Brunton, D. H., & Hauber, M. E. (2007). Predictive habitat modelling for the population census of a burrowing seabird: A study of the endangered Cook's petrel. Biological Conservation, 138(1-2), 235-247. https://doi.org/10.1016/j.biocon.2007.04.021

Sánchez-Pinero, F., & Polis, G. A. (2000). Bottom‐up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology, 81(11), 3117-3132. https://doi.org/10.1890/0012-9658(2000)081[3117:BUDOAI]2.0.CO;2

Scott, D., Moller, H., Fletcher, D., Newman, J., Aryal, J., Bragg, C., & Charleton, K. (2009). Predictive habitat modelling to estimate petrel breeding colony sizes: Sooty shearwaters (Puffinus griseus) and mottled petrels (Pterodroma inexpectata) on Whenua Hou Island. New Zealand Journal of Zoology 36(3), 291-306. https://doi.org/10.1080/03014220909510156

Spear, L. B., Ainley, D. G., & Walker, W. A. (2007). Foraging dynamics of seabirds in the Eastern Tropical Pacific Ocean. Studies in Avian Biology, 35, 1-99.

Stice, G. D., & McCoy, F. W. (1968). The geology of the Manu'a islands, Samoa. Pacific Science, 22, 427-457.

Titmus, A. J. (2017). Investigating spatiotemporal distribution and habitat use of poorly understood Procellariiform seabirds on a remote island in American Samoa. [Doctoral dissertation, University of Hawai‘i at Manoa]. ScholarSpace at University of Hawai‘i at Manoa.

Titmus, A. J., & Lepczyk C. A. (2024). Determining spatial and temporal patterns of Procellariiform seabird habitat use on Ta‘ū, American Samoa. [Unpublished manuscript]. Department of Biology, University of Hawai‘i at Mānoa.

Towns, D. R., Byrd, G. V., Jones, H. P., Rauzon, M. J., Russell, J. C., & Wilcox, C. (2011). Impacts of introduced predators on seabirds. In C. P. H. Mulder, W. B. Anderson, D. R. Towns, & P. J. Bellingham (Eds.), Seabird islands: Ecology, invasion, and restoration (pp. 56-90). Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199735693.003.0003

United States Department of Agriculture. (n.d.). USDA Geospatial Data Gateway. Retrieved October 1, 2016 from https://datagateway.nrcs.usda.gov/GDGHome.aspx

Unites States Geological Survey. (2002). Digital Elevation Model (DEM) of the Manu'a Islands, American Samoa. Fagetele Bay National Marine Sanctuary GIS Data Archive. https://dusk.geo.orst.edu/djl/samoa/

VanZandt, M., Delparte, D., Hart, P., Duvall, F., & Penniman, J. (2014). Nesting characteristics and habitat use of the endangered Hawaiian petrel (Pterodroma sandwichensis) on the island of Lāna‘i. Waterbirds, 37(1), 43-51. https://doi.org/10.1675/063.037.0107

Waggitt, J., Evans, P. G. H., Andrade, J., Banks, A. N., Boisseau, O., Bolton, M., Bradbury, G., Brereton, T., Camphuysen, C. J., Durinck, J, Felce, T., Fijn, R. C., Garcia-Baron, I., Garthe, S., Geelhoed, S. C. V., Gilles, A., Goodall, M., Haelters, J., Hamilton, S., . . . Hiddink, J. G. (2020). Distribution maps of cetacean and seabird populations in the North-East Atlantic. Journal of Applied Ecology, 57(2), 253-269. https://doi.org/10.1111/1365-2664.13525

Wardle, D. A., Bellingham, P. J., Bonner, K. I., & Mulder, C. P. H. (2009). Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands. Ecology, 90(2), 452-464. https://www.jstor.org/stable/27651000

Warham, J. (1990). The petrels: their ecology and breeding systems. Academic Press. https://doi.org/10.1017/S0954102092220514

Webb, E. L., Van De Bult, M., Fa'auma, S., Webb, R. C., Tualaulelei, A., & Carrasco, L. R. (2014). Factors affecting tropical tree damage and survival after catastrophic wind disturbance. Biotropica, 46(1), 32-41. https://doi.org/10.1111/btp.12067

Whistler, W. A. (1992). Botanical inventory of the proposed Ta‘ū unit of the National Park of American Samoa. (Technical Report 83). Cooperative National Park Resources Study Unit, University of Hawaii at Manoa. https://manoa.hawaii.edu/hpicesu/techr/087.pdf

Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann, C. F., Forchhammer, M. C., Grytnes, J.-A. Heikkinen, R. K., Høye, T. T., Kühn, I., Luoto, M., Maiorano, L.,  Nilsson, M.-C.,  Normand, S., Öckinger, E.,  Schmidt, N. M., Termansen, M., . . . Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1), 15-30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

Search by author or title:

Browse previous volumes: